摘要:
Featured are methods for magnetic resonance imaging in which MR signals of selected tissues, fluid or body components in a target area are desired to be essentially eliminated, which method includes applying an initial RF inversion pulse to invert the magnetization of the selected tissues or to apply any other T1 preparation aimed at nulling one or more tissue species and successively applying one or more RF inversions pulses thereafter. More particularly, the successively applied RF inversion pulses are applied so as to essentially maintain the magnetization of the selected tissues at or about the zero-crossing point of the longitudinal magnetization. Such methods further include interleaving a plurality of excitation pulses for acquiring image data and the RF inversion pulses so that at least one of the plurality of excitation pulses follows in a time sequence the application of one of the applied RF inversion pulses such that the image data is acquired following an inversion pulse.
摘要:
A system composed of multiple transmit coils with corresponding RF pulse synthesizers and amplifiers is disclosed. A method of designing RF pulses specific to each transmit coil to induce spatiotemporal variations in a composite B1 field is also disclosed. The present invention supports faithful production of desired excitation profiles and accommodates the use of any coil array geometry. The present invention also supports reduction in excitation pulse length. Through effective B1 field maps for each transmit coil, mutual coupling and other inter-coil correlations are accounted for in the RF pulse design.
摘要:
Disclosed herein is a system and method for decreasing gradient field pulse sequence duration and reducing peripheral nerve stimulation with known gradient pulse areas for a magnetic resonance imaging system. The method comprising: receiving a first desired area corresponding to a first pulse; obtaining a second desired area corresponding to a second pulse; selecting the first pulse as a nested pulse if the first desired area is smaller than the second desired area, and establishing the second pulse as a nesting pulse, otherwise selecting the second pulse as the nested pulse and establishing the first pulse as the nesting pulse. The method also includes: determining an amplitude and pulse duration for the nested pulse and ascertaining an amplitude and pulse duration for the nesting pulse. Finally, the method includes arranging a plurality of gradient field pulse sequences to include the nested pulse and the nesting pulse.
摘要:
The acquisition of MR images while utilizing sub-sampling of the RF signals generated in the patient 21 to be examined is known. Such sub-sampling methods require at least two RF receiving coils which should not have a substantial component of their sensitivity vectors in common. According to the invention at least two coils 22a, 22b are used, a first one (22a) having its sensitivity vector extending substantially transversely of its physical coil plane whereas a second one (22b) has its sensitivity vector extending substantially parallel to its physical coil plane. The coils can thus be placed close to the surface of the patient without interfering with each other. They can be arranged in such a manner that their planes are oriented parallel to the main magnetic field Bo. Moreover, the coils can be arranged so as to overlap substantially, so that they provide the same field of view.
摘要:
The present invention provides a system and method of MR imaging particularly applicable with fast spin echo protocols. Odd and even echoes are used to create separate blades or strips in k-space. Preferably, each blade extends through the center of k-space. The blades are incrementally rotated about the center of k-space with each echo train until a full set of k-space data is acquired. After a phase correction, each odd and even blade is combined into a single k-space data set that is used for image reconstruction.
摘要:
In a method and apparatus for generating a magnetic resonance image, raw magnetic resonance data are acquired from a subject for each of a number of PROPELLER strips using, for each strip, multiple magnetic resonance reception coils in a partial acquisition technique (PAT), and the raw data in said PROPELLER strips are entered into k-space according to the PROPELLER scan. A PAT reconstruction of the data in k-space is conducted dependent on the respective sensitivities of the reception coils, and a PROPELLER reconstruction of the data in k-space is conducted after the PAT reconstruction for generating a magnetic resonance image of the subject.
摘要:
A method of generating a magnetic resonance image is provided, comprising subjecting a subject to a magnetic field. The subject comprised of a first tissue a second tissue and a third tissue. The method generates a first pulse sequence at a first TI time and generates a first image after the first pulse sequence. The first image has a first image first tissue magnitude, a first image second tissue magnitude, and a first image third tissue magnitude. The method then generates a second pulse sequence at a second TI time and generates a second image after the second pulse sequence. The second image has a second image first tissue magnitude, a second image second tissue magnitude, and a second image third tissue magnitude. Finally, the method generates a resultant image by combining the first image and the second image. The first image first tissue magnitude and the second image first tissue magnitude combine to form a positive resultant first tissue magnitude. The first image third tissue magnitude and the second image third tissue magnitude combine to form a negative resultant image third tissue magnitude.
摘要:
The present invention provides a system and method of MR imaging particularly applicable with fast spin echo protocols. Odd and even echoes are used to create separate blades or strips in k-space. Preferably, each blade extends through the center of k-space. The blades are incrementally rotated about the center of k-space with each echo train until a full set of k-space data is acquired. After a phase correction, each odd and even blade is combined into a single k-space data set that is used for image reconstruction.
摘要:
In a magnetic resonance imaging apparatus, a main magnet assembly (12) produces a uniform magnetic field through an imaging region (14). An imaging region is defined within a subject by selecting gradient magnetic fields spatially encode the main magnetic field. A whole body birdcage radio frequency coil (26) excites magnetic resonance in dipoles of the subject. The resonance signals are received by the whole body coil (26) and by a second, local birdcage radio frequency coil (16). The first radio frequency coil (26) produces and is sensitive to a uniform radio frequency field in the imaging region (14) while the second radio frequency coil (28) is sensitive to a field that varies sinusoidally in space. From one radio frequency excitation, the two birdcage coils (26, 16) receive different sets of data with which to fill k-space, accelerating data collection.
摘要:
A magnetic resonance method for forming a fast dynamic image from a plurality of signals of an RF probe is described. The RF probe is moved relative to an object to be imaged so as to acquire at least two adjacent Fields-of-View (FOV) which are reconstructed so as to form an image of a region of interest which includes both FOVs. The object to be imaged is scanned by a moving RF antenna. Furthermore, the first FOV is centered at the initial probe position and after each subsequent scan the position of the imaging field within the actual FOV is determined. From that data the next position of the RF probe relative to the object is computed and, if the imaging field runs out of the actual FOV, the RF antenna is moved to the estimated next position of the RF probe so that the subsequent FOV is centered again at the RF probe position. A composite image is then generated from the successive images of the various adjacent FOVs.