Abstract:
One embodiment of the present invention relates to a radar transmitter comprised within a single integrated chip substrate, which is capable of continuous beam steering of a transmitted radar beam as well as an option to change the physical position of the origin of the transmit radar beam. The radar transmitter has a signal generator that generates an RF signal. The RF signal is provided to a plurality of independent transmission chains, which contain independently operated vector modulators configured to introduce an individual phase adjustment to the high frequency input signal to generate separate RF output signals. A control unit is configured to selectively activate a subset of (e.g., two or more) the independent transmission chains. By activating the subset of independent transmission chains to generate RF output signals with separate phases, a beam steering functionality is enabled. Furthermore, the subset defines a changeable position of the transmitted radar beam.
Abstract:
An electronic scanning type radar device mounted on a moving body includes: a transmission unit transmitting a transmission wave; a reception unit comprising a plurality of antennas receiving a reflection wave of the transmission wave from a target; a beat signal generation unit generating a beat signal from the transmission wave and the reflection wave; a frequency resolution processing unit frequency computing a complex number data; a target detection unit detecting an existence of the target; a correlation matrix computation unit computing a correlation matrix from each of a complex number data of a detected beat frequency; a target consolidation processing unit linking the target in a present detection cycle and a past detection cycle; a correlation matrix filtering unit generating an averaged correlation matrix by weighted averaging a correlation matrix of a target in the present detection cycle and a correlation matrix of a related target in the past detection cycle; and a direction detection unit computing an arrival direction of the reflection wave based on the averaged correlation matrix.
Abstract:
A signal processing device performs object detection processing in which peak signals each representing a differential frequency between a transmitted signal in which a frequency thereof changes in a predetermined cycle and a received signal are derived in a first period where the frequency of the transmitted signal rises and a second period where the frequency of the transmitted signal falls, and the peak signals in the first period are paired with the peak signals in the second period to detect object information related to the peak signals. A range setting unit sets a frequency range in each of the first period and the second period on the basis of a frequency of an integer multiple of the peak signal related to the object information which has been detected in previous object detection processing. A signal setting unit sets a peak signal as a specific peak signal in a case where the peak signal is within the frequency range in each of the first period and the second period. A paring unit pairs the specific peak signal in the first period and the specific peak signal in the second period.
Abstract:
Embodiments of the invention provide apparatus (100) for detecting an erroneous measurement of a range of a target object 20 from a subject object (5) comprising: wireless transmission means (111) for transmitting a signal (111S) having a first frequency from the subject object (5) to the target object (20); detector means (113) for detecting a portion of the signal (113S) reflected from the target object (20) back to the subject object (5); range determination means (131) for determining the range (202) of the target object (20) from the subject object (5) by reference to a time of flight of said portion of the signal (111S), (113S) from the transmission means (111) to the detector means (113); and rate determination means (131) for determining the rate of change of the range (203) by reference to a difference between the first frequency and an apparent frequency of the reflected portion of the signal (113S) detected by the detector means (113), the apparatus (100) being arranged to provide an indication (206) that an erroneous measurement of range has been made if the range (202) determined by the range determination means (131) increases whilst the rate of change of range (203) determined by the rate determination means (131) is negative.
Abstract:
A radar device according to an embodiment includes a transmission unit, a reception unit, and a processing unit. The transmission unit emits a transmission wave relating to a frequency-modulated transmission signal. The reception unit receives a reflected wave acquired by reflecting the transmission wave on an object as a reception signal. The processing unit detects object data corresponding to the object from the reception signal, outputs the object data to the vehicle control device that controls the vehicle, and removes object data satisfying the removal condition that is a condition used for determining whether or not object data is to be removed from an output target for the vehicle control device and includes at least the distance and the relative speed of the object data with respect to the speed of the vehicle as conditions from output targets for the vehicle control device.
Abstract:
An electronic scanning radar apparatus includes a transmission unit configured to transmit a transmission wave, and a receiving unit including a plurality of antennas receiving a receiving wave coming from a target. The receiving wave is formed from a reflection wave of the transmission wave reflected at the target. A beat signal generation unit is configured to generate beat signals in response to the transmission wave and the receiving wave. A frequency resolution processing unit is configured to obtain complex number data calculated from beat frequencies having signal levels obtained by performing a frequency resolution for the beat signals based on a predetermined frequency width. A peak detector is configured to detect an existence of the target by detecting peak signal levels of the beat frequencies, and a direction detecting unit is configured to calculate an incoming direction of the receiving wave based on a normal equation having an order.
Abstract:
This invention relates to a method for determining at least one of a distance and a relative velocity by means of continuous wave radar measurements. The method includes generating a measurement signal in the form of a continuous wave radar signal; transmitting the measurement signal by means of an antenna (112); reflecting the measurement signal by means of a reflector (118), thereby providing a desired reflected measurement signal; receiving the desired reflected measurement 112 signal; and determining at least one of a distance and a relative velocity between the antenna and the reflector by means of the desired reflected measurement signal. The reflection of the measurement signal involves asymmetrically modulating the measurement signal at the reflector. The determination of at least one of a distance and a relative velocity includes detecting the desired reflected measurement signal among several received reflections of the measurement signal, by means of information added by the asymmetric modulation.
Abstract:
An electronic scanning radar apparatus includes a transmission unit configured to transmit a transmission wave, a receiving unit including a plurality of antennas receiving an incoming wave coming from a target, a beat signal generation unit configure to generate beat signals in response to the transmission wave and the incoming wave, a frequency resolution processing unit obtaining complex number data calculated from beat frequencies having signal levels obtained by performing a frequency resolution for the beat signals based on a predetermined frequency width, a peak detector detecting an existence of a present target by detecting peak signal levels of the beat frequencies, a target link unit associating between the present target detected in a present detecting cycle and a past target detected in past detecting cycles; and a direction detecting unit calculating a direction of the incoming wave based on the weighted averaging process.
Abstract:
An apparatus includes: a processor that executed a procedure, the procedure including: detecting a moving vehicle as the moving vehicle approaches a vehicle queue based on a signal from a sensor, acquiring a position and a speed of the moving vehicle based on the signal, calculating a stop position of the moving vehicle based on a change in the position and the speed of the moving vehicle, and calculating a length of the vehicle queue based on the stop position of the moving vehicle.
Abstract:
A system and method for detecting entities based on movement can involve transmission circuitry configured to enable transmission of a stepped-frequency radar signal, an antenna, and receiving circuitry configured to generate data including information associated with frequency and phase shifts between the transmitted signal and the reflections of the transmitted signal. The system also can involve a processor configured to analyze the generated data to determine information associated with a moving object located at a side of a wall different than a side of the wall of which the system is located. The analyzing can involve compensating for the effect of motion of the system on the phase shifts between the transmitted signal and the reflections of the transmitted signal.