Abstract:
In an optical modulator comprising substrate 1 having electro-optical effect, two optical waveguides 3a, 3b formed in the substrate, buffer layer 2 formed on the substrate, traveling-wave electrode 4 having center conductor 4a and ground conductors 4b, 4c above the buffer layer, and ridge sections formed with recessed sections 9a to 9c by carving at least a part of the substrate where an electrical field strength of high-frequency electrical signal propagating the traveling-wave electrode is strong, in which the ridge sections include center conductor ridge section 8a having the center conductor formed above and ground conductor ridge section 8b having the ground conductor formed above, and the center conductor ridge section has one of the two optical waveguides formed therein, the recessed sections are practically symmetrical to the center line between the two optical waveguides and the traveling-wave electrode is practically symmetrical to the center line of the center conductor.
Abstract:
An electro-optic modulator includes a substrate made of a material which has an electro-optic effect and a pyroelectric effect. In the substrate, an optical waveguide is formed to have at least a pair of optical paths. On the substrate and on the optical waveguide, a transparent buffer layer is formed to cover the optical waveguide. On the buffer layer, first and second electrodes are formed so that the first and the second electrodes are arranged to cause refractive index changes in the pair of optical paths in response to electrical fields surrounding the electro-optic modulator. The buffer layer is a mutual diffusion layer. The mutual diffusion layer is made from laminated films having at least one transparent insulator film and at least one transparent conductor film but has no clear boundary between the transparent insulator film and the transparent conductor film.
Abstract:
An apparatus and method for high speed phase modulation of optical beam. For one embodiment, an apparatus includes an optical waveguide having adjoining first and second regions disposed in semiconductor material. The first and second regions have opposite doping types. A first buffer is disposed along the optical waveguide. A first higher doped region of semiconductor material is also included outside an optical path of the optical waveguide. An inner portion of the first higher doped region is adjoining and coupled to the first region of the optical waveguide. An outer portion of the first higher doped region is adjoining the first buffer. The first higher doped region has a higher doping concentration than a doping concentration within the optical path of the optical waveguide. A first contact having an inner portion adjoining and coupled to the first higher doped region is also included. The first contact has an outer portion adjoining the first buffer.
Abstract:
A method including poling an optical waveguide device including an optical waveguide core, an electrode, and an organically modified sol-gel layer.
Abstract:
An apparatus and method for high speed phase modulation of optical beam. For one embodiment, an apparatus includes an optical waveguide having adjoining first and second regions disposed in semiconductor material. The first and second regions have opposite doping types. A first buffer is disposed along the optical waveguide. A first higher doped region of semiconductor material is also included outside an optical path of the optical waveguide. An inner portion of the first higher doped region is adjoining and coupled to the first region of the optical waveguide. An outer portion of the first higher doped region is adjoining the first buffer. The first higher doped region has a higher doping concentration than a doping concentration within the optical path of the optical waveguide. A first contact having an inner portion adjoining and coupled to the first higher doped region is also included. The first contact has an outer portion adjoining the first buffer.
Abstract:
A manufacturing method for an optical waveguide device. The manufacturing method includes the steps of forming an optical waveguide in a substrate having an electro-optic effect, forming an SiO2 film on the substrate, forming Si films on the SiO2 film, the lower surface of the substrate, and at least a part of the side surface of the substrate to thereby make a conduction between the Si film formed on the SiO2 film and the Si film formed on the lower surface of the substrate. The manufacturing method further includes the steps of applying a photoresist to the Si film formed on the SiO2 film, patterning the photoresist so that a portion of the photoresist corresponding to the optical waveguide is left, forming a groove on the substrate along the optical waveguide by reactive ion etching, and removing the photoresist and the Si films.
Abstract:
The present invention discloses an electro-optic waveguide device such as a modulator. The device has an electro-optic substrate having optical waveguides within the substrate at or near an upper surface. A buffer layer is formed on the top surface of the electro-optic substrate. A novel block layer is formed on the buffer layer surface, which can suppress or lessen an unwanted occurrence of chemical reactions at or near the surface of the buffer layer. A charge bleed off layer is formed on the block layer, which has a certain amount of electrical conductivity to bleed off any electrical charges generated on or in the electro-optic waveguide device. Electrodes are on the charge bleed off layer, which can provide electrical signals to the optical waveguides through the buffer layer, the block layer, and the charge bleed off layer.
Abstract:
An electro-optic modulator (300) comprises a substrate (310) made of a material which has an electro-optic effect and a pyroelectric effect. In the substrate (310), an optical waveguide (320) is formed to have at least a pair of optical paths. On the substrate (310) and on the optical waveguide (320), a transparent buffer layer (330) is formed to cover the optical waveguide (320). On the buffer layer (330), first and second electrodes (341, 342) are formed so that the first and the second electrodes (341, 342) are arranged to cause refractive index changes in the pair of optical paths in response to electrical fields surrounding the electro-optic modulator (300). The buffer layer (330) is a mutual diffusion layer. The mutual diffusion layer is made from laminated films comprised of at least one transparent insulator film and at least one transparent conductor film but has no clear boundary between the transparent insulator film and the transparent conductor film.
Abstract:
The present invention relates to an optical modulator capable of preventing a disconnection of an electrode and improving a discontinuity of a characteristic impedance while realizing a polarization inverting area and a ridge waveguide in a single optical modulator. In the optical modulator, a first electrode is composed of an inverting area electrode portion formed on an upper portion of one of first and second waveguides in the polarization inverting area, a non-inverting area electrode portion formed on an upper portion of the other one of the first and second waveguides in the other area, and a connection portion for making a connection between the inverting area electrode portion and the non-inverting area electrode portion at the boundary between the polarization inverting area and the other area. A supporting mechanism for supporting the connection portion of the first electrode is provided in a groove.
Abstract:
An electro-optic modulator (300) comprises a substrate (310) made of a material which has an electro-optic effect and a pyroelectric effect. In the substrate (310), an optical waveguide (320) is formed to have at least a pair of optical paths. On the substrate (310) and on the optical waveguide (320), a transparent buffer layer (330) is formed to cover the optical waveguide (320). On the buffer layer (330), first and second electrodes (341, 342) are formed so that the first and the second electrodes (341, 342) are arranged to cause refractive index changes in the pair of optical paths in response to electrical fields surrounding the electro-optic modulator (300). The buffer layer (330) is a mutual diffusion layer. The mutual diffusion layer is made from laminated films comprised of at least one transparent insulator film and at least one transparent conductor film but has no clear boundary between the transparent insulator film and the transparent conductor film.