Abstract:
A display device comprises: a first substrate (20), a first polarizer (10), a second polarizer (50), a first electrode (30), a second electrode (31), an electrically controlled birefringence crystal layer (40). The first polarizer (10) is attached to the first substrate (20). The second polarizer (50) is disposed to face the first substrate (20) and parallel to the first substrate (20). The first electrode (30) and the second electrode (31) are disposed between the first substrate (20) and the second polarizer (50) and separate from each other. The electrically controlled birefringence crystal layer (40) is disposed between the first electrode (30) and the second electrode (31) and has a primary electro-optic effect. The corresponding manufacturing method for a display is also provided.
Abstract:
There is described an optical modulation system for transmitting modulated optical light. The system comprises an electro-optic modulator having at least two arms through which light is transmitted and an imbalance electrode located on at least one arm. A current source is configured to inject current into the imbalance electrode for modifying the phase of light passing through the arm. A dither generator is configured to modulate the injected current, or bias voltage applied to at least one of the arms, with a dither signal. A phase sensitive detector is configured to detect an error in the phase of light emitted by the modulator. An operating point controller is configured to monitor the detected phase error and adjust the current injected into the imbalance arm so as to compensate for the detected error and thereby control an operating point of the modulator.
Abstract:
Embodiments of the invention describe a multi-segment optical waveguide that enables an optical modulator to be low-power and athermal by decreasing the device length needed for a given waveguide length. Embodiments of the invention describe an optical waveguide that is folded onto itself, and thus includes at least two sections. Thus, embodiments of the invention may decrease the device size of a modulator by at least around a factor of two if the device is folded twofold (device size may be further reduced if the modulator is folded threefold, four-fold, five-fold, etc.).Embodiments of the invention further enable the electrode length required to create the desired electro-optic effect for the multi-segment optical waveguide to be reduced. In embodiments of the invention, certain electrodes may be “shared” amongst the different segments of the waveguide, thereby reducing the power requirement and capacitance of a device having a waveguide of a given length.
Abstract:
A stereoscopic display device is provided that enables stereoscopy for various viewing positions. A stereoscopic display device (1) includes: a display panel (14) configured to display images for a plurality of viewpoints, the images having parallax and being arranged regularly; a light beam convertor (11) disposed adjacent the front side of the display panel (14) configured to form virtual lenticular lenses by controlling a voltage, the lenticular lenses adapted to the images on the display panel (14) and being arranged at a certain interval; and a controller configured to control the display panel (14) and the light beam convertor (11). The controller changes the focal length of the virtual lenticular lenses formed by the light beam convertor (11) depending on the distance between the display panel (14) and a viewer.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
ProblemsTo provide a method for evaluating characteristics of MZ interferometers in an optical modulator having a plurality of MZ interferometers.Means for Solving ProblemsWhen an optical modulator includes a plurality of MZ interferometers, the 0-degree component contains a signal derived from an MZ interferometer other than the MZ interferometers for evaluating the characteristic. For this, it is impossible to accurately evaluate the characteristic of the MZ interferometers. The present invention does not use the 0-degree component normally having the highest intensity. That is, the characteristic of the MZ interferometers are evaluated by using a side band intensity of the component other than the 0-degree component.
Abstract:
There is described an optical modulation system for transmitting modulated optical light. The system comprises an electro-optic modulator having at least two arms through which light is transmitted and an imbalance electrode located on at least one arm. A current source is configured to inject current into the imbalance electrode for modifying the phase of light passing through the arm. A dither generator is configured to modulate the injected current, or bias voltage applied to at least one of the arms, with a dither signal. A phase sensitive detector is configured to detect an error in the phase of light emitted by the modulator. An operating point controller is configured to monitor the detected phase error and adjust the current injected into the imbalance arm so as to compensate for the detected error and thereby control an operating point of the modulator.
Abstract:
An RF photonic link having at least one light source, at least one photodetector, multiple optoelectronic modulators, and an RF waveguide common to each one of said multiple optoelectronic modulators. The multiple optoelectronic modulators are optically arranged in parallel to receive light from said at least one light source and are disposed in said RF waveguide. The RF waveguide, in use, guides an RF electromagnetic field applied to each of the multiple optoelectronic modulators disposed therein, the RF electromagnetic field propagating through the RF waveguide in a direction that is perpendicular to a direction in which an optical field propagates through each of said optoelectronic modulators.
Abstract:
In an optical modulator, an intermediate substrate is provided separate from a main substrate on which a plurality of optical modulation sections are provided in parallel, and signal lines corresponding to the optical modulation sections are formed on the intermediate substrate. The signal lines are connected to signal electrodes corresponding to the main substrate, and have electrical lengths that are different from each other. Furthermore, the propagation loss per unit length in the signal lines on the intermediate substrate is preferably less than the propagation loss per unit length in the signal electrodes on the main substrate. As a result, even if a plurality of optical modulation sections are arranged in parallel, and the input ends of the signal electrodes of the optical modulation sections are arranged side by side on one side face of the substrate, synchronized modulation light of a low noise at a wide band width can be output from the optical modulation sections.
Abstract:
A method and system for generating an optical frequency comb that employs a dual parallel modulator that inputs an optical signal at a center frequency of a desired optical frequency comb and an RF signal at a frequency corresponding to a desired spacing of the teeth of the optical frequency comb. The amplitudes of the teeth of the optical frequency comb are controlled by controlling the amplitudes of the two RF inputs to the DPM and the phase shift between the two RF inputs. In some embodiments, the three bias voltages for the three interferometers in the DPM are also controlled. In some embodiments, all three interferometers are all biased at the same point (e.g., quadrature). Preferably, but not necessarily, the three interferometers of the DPM are formed on a single substrate.