Abstract:
Toner contains a binder resin containing one or more kinds of crystalline resin and one or more kinds of non-crystalline resin. The non-crystalline resin located at the surface portion of the toner forms a shell structure of a continuous phase of the non-crystalline resin and the toner has an amount of melting heat of 30 J/g or more in a second temperature rising as measured by differential scanning calorimetry (DSC).
Abstract:
Disclosed is a toner for developing electrostatic images comprising a colored resin particle containing a binder resin, a colorant and a softening agent, and an external additive, wherein the colored resin particle contains a diester compound represented by the following general formula (1) as the softening agent, and a content of the diester compound is in the range from 1 to 15 parts by mass with respect to 100 parts by mass of the colored resin particle, and the toner has a softening temperature “Ts” of 55 to 70° C., a flow starting temperature “Tfb” of 80 to 100° C. and a glass transition temperature of 40 to 70° C. in a flow tester: wherein, R1 is an ethylene group or a trimethylene group; and each of R2 and R3 is independently a linear alkyl group having 11 to 25 carbons.
Abstract translation:公开了一种用于显影静电图像的调色剂,其包含含有粘合剂树脂,着色剂和软化剂的着色树脂颗粒和外部添加剂,其中着色树脂颗粒含有由以下通式(1)表示的二酯化合物作为 软化剂,二酯化合物的含量相对于着色树脂粒子100质量份为1〜15质量份,调色剂的软化温度“Ts”为55〜70℃ 流动测试仪中的流动起始温度“Tfb”为80至100℃,玻璃化转变温度为40至70℃。其中,R1为亚乙基或三亚甲基; R 2和R 3各自独立地为碳原子数为11〜25的直链烷基。
Abstract:
A white toner has a first temperature range not less than 25° C. in which 60° glossiness is 10 or less between a fixable minimum temperature and a fixable maximum temperature thereof. The white toner has a second temperature range not less than 25° C. in which 60° glossiness is from 30 to 60 therebetween.
Abstract:
To provide a toner that can keep its melt-sticking to sleeve from occurring and, even in double-sided printing, can keep high-temperature offset from occurring and obtain high-quality images on both the surface and the back. The toner comprises toner particles each of which contains a binder resin containing a resin formed by the reaction of i) a resin (A) having a softening point TA (° C.) of 70° C. to 105° C. and having a peak top of endothermic peaks at 55° C. to 120° C. with ii) a resin (B) having a softening point TB (° C.) of 120° C. to 160° C. and having a peak top of endothermic peaks at 55° C. to 120° C., and, in its viscoelasticity characteristics, has a storage elastic modulus at temperature 180° C. (G′180) of 3.0×103 Pa to 3.0×104 Pa, where the loss tangent tan δ has at least one peak having a peak top within the range of 50° C. to 70° C. and, when peak top temperature of the peak is represented by T(° C.), the loss tangent at T+10(° C.) [tan δ(T+10)] is 1.0 to 1.5 and the ratio of tan δ(T+10)/tan δ(110) is 0.8 to 1.5.
Abstract:
A toner including a toner particle that contains a binder resin, a polyester resin A and a wax, wherein the polyester resin A contains a specific amount of an isosorbide unit based on a total number of monomer units constituting the polyester resin A, the content of the polyester resin A is a specific amount, and when observing a cross-section of the toner, twenty toner particle cross-sections are selected that have a major axis R (μm) that satisfies a specific relationship with respect to the weight-average diameter D4 (μm) of the toner, each major axis r that have the largest major axis is measured for those domains composed of wax present in the selected toner particle cross-sections, and the arithmetic mean (r/R)st of the determined r/R satisfies a specific relationship.
Abstract:
A toner including a crystalline resin wherein the crystalline resin contains a crystalline resin having a urethane bond, a urea bond or both thereof, and wherein the crystalline resin has an average crystallite diameter of 20 nm to 70 nm.
Abstract:
The magnetic toner contains a magnetic toner particle having a binder resin and a magnetic body, and inorganic fine particles, wherein the average circularity of the magnetic toner is at least 0.955 and, when classifying the inorganic fine particles, in accordance with the fixing strength thereof to the magnetic toner particle and in the sequence of the weakness of the fixing strength, as first inorganic fine particles, second inorganic fine particles, and third inorganic fine particles, the content of the first inorganic fine particles, the ratio of the second inorganic fine particles to the first inorganic fine particles, and the coverage ratio X are in prescribed ranges.
Abstract:
A method of producing an emissive toner composition including selecting a photoluminescent agent, a charge control agent, and one or more additives and combining the photoluminescent agent, charge control agent, and one or more additives to form an emissive toner composition that when printed to produce an image component on a substrate, the emission spectra of the image component for irradiation with a first excitation energy includes only dominant emission peaks corresponding to one or more dominant emission peaks of the photoluminescent agent. The photoluminescent agent is selected such that it emits light having one or more dominant emission peaks in a first emission spectral region when irradiated with the first excitation energy. The charge control agent and one or more additives are selected such that they do not emit light in the visible spectrum when irradiated with visible light and does not emit light in the first emission spectral region when irradiated with the first excitation energy.
Abstract:
An electrostatic charge image developing toner includes a binder resin that contains an amorphous polyester resin and a colorant. The toner satisfies the following expressions: 20 μS/cm≦ρ≦150 μS/cm, and 0.01%
Abstract:
An image forming apparatus including: image bearing member; latent image forming unit; developing unit; transfer unit; fixing unit, wherein toner in the developing unit contains amorphous polymer, crystalline resin and releasing agent, when the toner is measured for G′ at 40° C. to 210° C. with rheometer at 1 Hz and 1 deg, G′(100) is ≦20,000 and G′(150) is ≧500 Pa, and straight line drawn by connecting points of the G′(100) and G′(110) on curve of the G′ has gradient of ≦0.035, the gradient being “a” expressed by: a=|log10G′(100)−log10G′(110)|/10, and the fixing unit includes: heating member containing flexible endless belt; heat source fixed within the flexible endless belt; and press member in contact with the belt to form nip portion, and the fixing unit is configured to heat/press the medium passing through the nip portion to fix the image on the medium.