Abstract:
A method for configuring a transmitter device to transmit a recognized transmission to a receiving device is provided. The method includes transmitting a first transmission and transmitting a second transmission after the first transmission. The method further includes receiving, during the second transmission, a user input signal from an interface for receiving signals from one or more user interface elements. The method further includes storing an attribute associated with the second transmission in a memory device in response to the user input signal.
Abstract:
An at least partially secure communication environment is provided in which accessory devices can be communicated with and controlled in the context of a movable barrier operator system. In one example approach, a gateway device can be configured to coordinate and control such communications in a secure manner. Three example approaches to such a communication environment include: a gateway device's receiving an accessory device control signal and sending a rolling code based accessory command signal to a target accessory device; receiving a rolling code based accessory device control signal and sending a command signal to an accessory device; and receiving a rolling code based accessory device control signal and sending a rolling code based accessory command signal to a target accessory device. Combinations are possible. An integrated system provides for automatic functioning of one device in response to status changes of one or more other devices.
Abstract:
A method for training a trainable RF transmitter to transmit variable code signals used to actuate a remote device having a receiver where the transmitter includes a memory that has stored variable code characteristics for a plurality of different remote devices includes initiating a training sequence and generating at least one RF carrier signal having the variable code characteristics associated with one remote device of the plurality of different remote devices. The method further includes transmitting the at least one RF carrier signal to the receiver of the remote device and repeating the generating and transmitting steps for the variable code characteristics of each remote device in the plurality of different remote device until feedback is received from a user that the remote device is activated. Upon receiving an indication that the remote device is activated, the transmitter stores an identifier of the variable code characteristics that activated the remote device.
Abstract:
A transmitter is configured to transmit activation signals based on transmission schemes in which one of the schemes is an appropriate scheme such that the appliance activates upon receiving an activation signal that is based on the appropriate scheme and has a code associated with the appliance. The transmitter is configured to receive a code represented by a sequence of bits and to transmit a sequence of different activation signals including different sets of first and second activation signals until user input indicating activation of the appliance is received by the transmitter. Each set of activation signals is based on a respective scheme, each first activation signal includes the sequence of bits and each second activation signal includes a bitwise reversal of the sequence of bits.
Abstract:
A transmitter is configured to transmit activation signals based on transmission schemes in which one of the schemes is an appropriate scheme such that the appliance activates upon receiving an activation signal that is based on the appropriate scheme and has a code associated with the appliance. The transmitter is configured to receive a code represented by a sequence of bits and to transmit a sequence of different activation signals including different sets of first and second activation signals until user input indicating activation of the appliance is received by the transmitter. Each set of activation signals is based on a respective scheme, each first activation signal includes the sequence of bits and each second activation signal includes a bitwise reversal of the sequence of bits.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful transmission. At least one of the sequences of activation signals inserts a preset amount of time after each activation signal transmission. If user input is not received within the preset amount of time, the next activation signal in the sequence is transmitted.
Abstract:
A radio frequency transmitter is configured to send radio frequency messages to activate a remote system. Each message includes an encrypted counter value and a transmitter identifier. The transmitter is configured to send at least two of the messages having sequential encrypted counter values in response to a single user input.
Abstract:
A system for activating an appliance responsive to one of many transmission schemes includes a transmitter, memory holding data describing the transmission schemes, and a controller in communication with the transmitter and the memory. The controller is operable to store a fixed code. If a fixed code is stored, then the controller transmits a sequence of fixed code activation schemes, based on the fixed code and data held in the memory, until input indicating activation of the appliance is received. If no fixed code is stored, then the controller transmits a sequence of rolling code activation schemes, based on data held in the memory, until input indicating activation of the appliance is received. The controller stores in the memory an indication as to which activation scheme activated the appliance based on the received input. The controller generates an activation signal based on the stored indication and a received activation input.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful rolling code transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful fixed code transmission. In response to an activation input, an activation signal is generated and transmitted based on data stored following user indication of a successful transmission.
Abstract:
A programmable controller for activating an appliance controlled by an activation signal is voice-programmable and voice-activated. If a user verbally indicates the appliance is activated by a rolling code activation signal, the controller transmits a sequence of different rolling code activation signals until the user verbally indicates a successful rolling code transmission. The controller stores data representing the successful rolling code transmission. If the user verbally indicates the appliance is activated by a fixed code activation signal, the controller uses a fixed code word to transmit each of a sequence of different fixed code activation signals until the user verbally indicates a successful fixed code transmission. The controller then stores data representing the fixed code word and a fixed code scheme used to generate the successful fixed code transmission. In response to the user verbally identifying an activation input, the controller transmits an activation signal based on stored data.