Abstract:
A broadcast receiving apparatus includes a first tuner configured to receive a broadcast wave from a specified broadcasting station, a second tuner configured to perform a frequency search for receivable broadcasting stations, a power supply unit configured to supply power to the first tuner and the second tuner, a traveling state detection unit configured to determine if a vehicle is moving or is stopped, a reception state detection unit configured to detect a reception state of a currently-received broadcast wave, and a control unit configured to control the first tuner, the second tuner, the power supply unit, the traveling state detection unit, and the reception state detection unit. The control unit causes power to be supplied to the second tuner and causes the second tuner to perform a frequency search while the vehicle is traveling, and when it is determined that the vehicle has stopped, the control unit turns the power supplied to the second tuner on and off in accordance with the reception state of the broadcast wave.
Abstract:
A radio broadcast receiver includes a front end unit for tuning by changing a local oscillation frequency; and a control unit for managing by dividing the receiving band into a third frequency domain including a third frequency obtained by subtracting the intermediate frequency from an upper end frequency of the receiving band, a first frequency domain including a first frequency obtained by adding the intermediate frequency to a lower end frequency of the receiving band, and a second frequency domain where the first frequency domain and third frequency domain overlap, and for switching, when tuning is made across the frequency domains, the local oscillation frequency to an upper local oscillation frequency when the tuning frequency is higher than the third frequency by controlling the front end unit, and to a lower local oscillation frequency when it is lower than the first frequency by controlling the front end unit.
Abstract:
A broadcast receiver and a method of processing data are disclosed. The broadcast receiver includes a signal receiving unit, a position information module, and a navigation unit. The signal receiving unit receives broadcast signal multiplexed mobile broadcast service data including traffic information and main broadcast service data. The position information module searches and generates a current position information of the broadcast receiver. The navigation unit assigns a weight to each link of a route to a destination based on the current position information received and the traffic information included in the mobile broadcast service data and searches for a bypass route based on the weighted link, and then performs route guidance using at least one of current route and the bypass route.
Abstract:
A receiver including a plurality of antennas for receiving at least one radio signal, an analog processing path in signal communication with at least one of the antennas, a digital processing path in signal communication with at least one of the antennas, and a processor for controlling a processing of the at least one radio signal, wherein the at least one radio signal is processed by at least one of the analog processing path and the digital processing path.
Abstract:
A radio broadcast receiver includes a front end unit for tuning by changing a local oscillation frequency; and a control unit for managing by dividing the receiving band into a third frequency domain including a third frequency obtained by subtracting the intermediate frequency from an upper end frequency of the receiving band, a first frequency domain including a first frequency obtained by adding the intermediate frequency to a lower end frequency of the receiving band, and a second frequency domain where the first frequency domain and third frequency domain overlap, and for switching, when tuning is made across the frequency domains, the local oscillation frequency to an upper local oscillation frequency when the tuning frequency is higher than the third frequency by controlling the front end unit, and to a lower local oscillation frequency when it is lower than the first frequency by controlling the front end unit.
Abstract:
A method of operating a single-tuner radio includes tuning into a first frequency. A pause in a first signal associated with the first frequency is detected. Tuning is switched from the first frequency to a second frequency during the pause. Fieldstrength, multipath, adjacent channel energy, frequency offset and FM modulation for the second frequency are measured. Tuning is switched from the second frequency to the first frequency. Tuning is switched from the first frequency to the second frequency dependent upon the measuring step.
Abstract:
Techniques for the reception and processing of wireless signals are disclosed. For instance, an apparatus may include multiple receiving paths, a content stream generation module, and a distribution module. The multiple receiving paths include a first receiving path that generates a first decoded signal from an input RF signal in accordance with a first tuning setting. The content stream generation module has first and second inputs. Based on decoded signals received at the first and second inputs, the content stream generation module may generate first and second content streams, respectively. In situations where both the first and second content streams correspond to the first tuning setting, the distribution module provides the first decoded signal to both the first and second inputs of the content stream generation module. Also, a control module may remove operational power from any of the plurality of receiving paths that are currently being unused.
Abstract:
A receiver including a plurality of antennas for receiving at least one radio signal, an analog processing path in signal communication with at least one of the antennas, a digital processing path in signal communication with at least one of the antennas, and a processor for controlling a processing of the at least one radio signal, wherein the at least one radio signal is processed by at least one of the analog processing path and the digital processing path.
Abstract:
A radio frequency front end for a television band receiver and spectrum sensor includes a first plurality of adaptive matching networks connected to a signal summer that combines signals received by the first plurality of antennas respectively connected to the first plurality of adaptive matching networks and outputs a combined signal to each of a second plurality of downconverter/tuners. The downconverter/tuners are respectively or collectively connected to an analog to digital converter that converts output of the second plurality of downconverter/tuners into at least one digital signal that is output to the television band receiver and spectrum sensor.
Abstract:
A system and method of controlling a portable radio may involve tuning a first receiver of the portable radio to a first broadcast from a first station, where the first broadcast includes specific program content. A switching event can be detected at the portable radio, where a second receiver of the portable radio may be tuned to a second broadcast from a second station in response to the switching event. The second broadcast can include the specific program content.