Abstract:
A pneumatic tire for use on trucks, the tire comprising: a tread which includes a belt reinforcement structure of only three belts, the belt structure including a pair of working belts, wherein the angle of the working belts range from about 10 degrees to about 50 degrees, wherein a zigzag or low angle belt is positioned preferably between the working belts or radially inward of the working belts. The belt structure further includes a rubber strip located between the radially innermost belt and the tire carcass, and preferably has a gauge that varies across the axial width of the tire.
Abstract:
Provided is a bias tire includes a carcass extending between a pair of bead portions, a pair of sidewall portions, a tread, and a reinforcement layer (5), formed by cords (5Cb), disposed so as to cover at least a portion of a tire circumferential edge (BEi) on the inner side, in the tire radial direction, of the innermost ply (2Bi) of the carcass in a tire half portion (HFa) on a side where, as a cord (Cb) of a tire circumferential end on the inner side, in the tire radial direction, of the innermost ply (2Bi) approaches the tire circumferential edge on the inner side, in the tire radial direction, of the innermost ply (2Bi) along the tire circumferential direction, the cord (Cb) is inclined so as to separate from the tire equator (CL).
Abstract:
A pneumatic tire is disclosed having two annular bead portions having a bead core. A carcass extends between the bead portions through sidewall portions and a tread portion, wherein the carcass includes at least two axially inner plies which extend down from the tread and axially inward of the bead core, said at least two axially inner plies being wound around the bead core forming respective turn-ups, each turnup being located axially outward of the bead core. The carcass further includes a first axially outer ply which extends down from the tread towards the bead core and positioned axially outward of the bead core, wherein at least one of the axially outer plies is formed from reinforcements having a higher break strength than the reinforcements of the axially inner plies.
Abstract:
A pneumatic tire comprising: first carcass ply that is comprised of; a tire-inner-face part extending along inner face of the tire to span between the tire bead portions; and turned-up parts extended as turned up from outer faces of the tire bead portions up to inside beyond fringes of a belt layer; and second carcass ply that is substantially omitted at between the tire bead portions and extends as being turned up from outer faces of the tire bead portions up to inside beyond fringes of a belt layer; and cords forming the tire-inner-face part, the turned-up part and the second carcass ply having inclination to radial direction of the tire; and direction of the inclination of the cords being alternated in respect of leftward or rightward, between two adjacent ones of the tire-inner-face part, the turned-up part and the second carcass ply.
Abstract:
The invention relates to a tire having at least one carcass reinforcement (2) comprising reinforcers, surmounted radially on the outside by a crown reinforcement (3) comprising two axial ends S, itself radially on the inside of a tread (4), said crown reinforcement (3) being made up of at least one layer of reinforcement elements, said tread (4) being connected to two beads (5) by way of two sidewalls (6), said beads (5) being intended to come into contact with a rim flange having a rim flange top C, each bead having at least one circumferential reinforcement element (7) known as a bead wire, said carcass reinforcement (2) comprising an end (8) at each bead (5), the end (8) of the carcass reinforcement (2) being turned up once in an outward radial direction of the tire and about said bead wire, so as to form a turnup, then being folded in the radially outward direction so as to form a fold of the carcass ply (2), said fold forming a radially external end (12a) and three adjacent parts along an axial axis made up of a central part (10), of an axially internal lateral part (11), and of an axially external lateral part (0), the fold being executed in an outward axial direction with respect to the center of the tire, characterized in that a decoupling elastomer composition (14) having a secant modulus at 10% extension of greater than or equal to 10 MPa and preferably greater than or equal to 30 MPa and less than or equal to 60 MPa is present between the axially internal lateral part and the central part of said turnup, and at the radially external end (12a) of said turnup (12), said elastomer composition being present along a radial length comprised between the radially external end of the turnup and a radially internal point F with respect to the end of said turnup, said point being situated on the sidewall and at a distance from said radially external end by a length greater than 10 mm, and in that the radially external end (12a) of the turnup (12) is disposed between the rim flange top C and a point D, said points C and D being situated at the surface of the sidewall (6) and disposed on either side of a point E situated on the sidewall corresponding to the nominal section width, said point D being disposed at a maximum radial length equal to 85% of the length present between the axial end S of the crown reinforcement (3) and the rim flange top C.
Abstract:
The invention relates to a tire having at least one carcass reinforcement comprising reinforcers, surmounted radially on the outside by a crown reinforcement, itself radially on the inside of a tread, said crown reinforcement being made up of at least one layer of reinforcement elements, said tread being connected to two beads by way of two sidewalls, said beads being intended to come into contact with a rim flange having a rim flange top C, each bead having at least one circumferential reinforcement element, said carcass reinforcement comprising an end at each bead, the end of the carcass reinforcement being turned up once in an outward radial direction of the tire and about said bead wire, so as to form a turnup, then being folded in said radially inward direction so as to form a fold forming a radially external end and three adjacent parts along an axial axis made up of a central part, of an axially internal lateral part, and of an axially external lateral part.The tire is characterized in that the radially external end of the turnup is disposed between the rim flange top C and a point D, said points C and D being situated at the surface of the sidewall and disposed on either side of a point E situated on the sidewall corresponding to the nominal section width, said point D being disposed at a maximum radial length equal to 85% of the length present between the axial end S of the crown reinforcement and the rim flange top C.
Abstract:
The tire (10) comprises a crown (12) surmounted by a tread (22), two sidewalls (24), two beads (26), each sidewall (24) connecting each bead (26) to the crown (12), a carcass reinforcement (34) anchored in each of the beads (26) and extending in the sidewalls (24) as far as the crown (12). The carcass reinforcement (34) comprises one carcass ply (44) comprising carcass reinforcing elements (46) having a mean laying pitch (P) strictly greater than 1.5 mm. The carcass ply (44) comprises an elastomer matrix (54) in which the carcass reinforcing elements (46) are embedded, each carcass reinforcing element (46) comprising: one filamentary element (56), and one sheath (58) coating the filamentary element (56) and comprising at least one layer (60) of a thermoplastic polymer composition.