摘要:
A Ground-Effect Flying-Boat system with a special hull producing a very low drag, but high lift, both in the water and in the air. A high pivoting-wing of an auto-stable airfoil, and one or more rear spoilers fitted on the hull-stern of the vessel having a special airfoil and determined horizontal and vertical slots producing very low drag, but a strong downward airstream deflection so as to increase the height of the ground-effect. The wing configuration allows for automatic maintenance of horizontal flight and automatic inclination in turns as well as an automatic anti-crash system against strong descendent gusts. These automatic stability features allow the craft to fly in rain or foggy weather without need of I.F.R. instruments, due to slide and spin resistance. In addition, the craft will not stall "nose down", but lose altitude slowly, with the hull remaining always practically horizontal. Water-landing is possible at a very reduced speed and even vertically into very strong winds and waves. The craft is easier and cheaper to build than conventional aircraft or seaplanes. The system can be scaled to craft of any size.
摘要:
The craft is for hovering flight, vertical takeoff and landing, and horizontal forward flight. It has a tail-sitting fuselage and a ducted fan mounted to the fuselage aft to provide propulsion in both (a) hovering and vertical flight and (b) horizontal forward flight. At each side is a floating wing, supported from the fuselage for passive rotation (or an actuator-controlled optimized emulation of such rotation) about a spanwise axis, to give lift in forward flight. The fuselage attitude varies between vertical in hovering and vertical flight, and generally horizontal in forward flight. Preferably the fuselage is not articulated; there is just one fan, the sole source of propulsion, rotating about only an axis parallel to the fuselage; and thrust-vectoring control vanes operate aft of the fan. Preferably at each side a small, nonrotating wing segment is fixed to the fuselage, and the floating wing defines--along its trailing portions--a corner notch or slot near the fuselage; forward portions of the fixed wing segment are within this notch. Preferably the spanwise axis is along a surface of the floating wing, and a long hinge supports that wing from the fixed wing segment, within the notch. During vertical and transitional flight characteristically the leading edge of the floating wing is down relative to the fuselage axis.
摘要:
A segmented rotatable beam provides a spar or rib in an aircraft wing. The rotatable beam has a variable stiffness dependent upon the radial orientation of the rotatable beam about a longitudinal axis of the beam. The segmented rotatable beam comprises a plurality of tubular segments that are pivotly interconnected by connecting beam links that are rotatably mounted in bearings disposed along the longitudinal axis of the beam.
摘要:
An improved VTOL/STOL free wing aircraft providing damping and absorption of shock landing loads upon landing. A pair of resilient struts is provided, projecting forwardly from the trailing edge of either side of the fuselage when the fuselage is tilted. Preferably, the aircraft includes a pair of articulated tail booms, the strut being a portion of the tail boom extending forward from the pivot axis of the tail boom. Landing wheels are disposed on the strut in tandem spaced relationship. The resiliency of the strut causes the strut to act as a leaf spring and thus dampen shock landing loads. Operatively secured to the bottom surface of the fixed wing portions and the forward portion of the landing gear struts is a pair of dashpots for absorbing the shock landing loads.
摘要:
Several innovative systems for an aircraft, and aircraft incorporating them, are disclosed. Features include inboard-mounted engine(s) with a belt drive system for turning wing-situated propellers; compound landing gear integrating ski, pontoon and wheel subcomponents; pivotal mounting armatures for landing gear and/or propellers which provide a plurality of possible landing gear and/or propeller configurations; and a compound wing structure featuring extendable wing panels that permit the wing span of the aircraft to be nearly doubled while in flight. Aircraft incorporating such features will enjoy several safety advantages over conventional multi-engine aircraft and will be capable of modifications during flight which permit landings on any of snow, hard surfaces (runways) and water.
摘要:
A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively for free rotation about a spanwise access. Improved control upon landing of the aircraft is achieved by utilizing a variable pitch propulsion system, enabling the pitch of the propeller to be varied corresponding to the speed of the aircraft and angle of approach upon descent.
摘要:
The vehicle includes a fuselage; a plurality of lifting surfaces attached to the fuselage having control devices attached thereto; and, an articulated propulsion system attached to the fuselage. The propulsion system includes a duct assembly pivotally connected to the fuselage. The duct assembly includes a duct and a propeller assembly mounted within the duct. A motor assembly is connected to the propeller assembly. The duct assembly may be positioned in a substantially vertical position to provide sufficient direct vertical thrust for vertical take-off and landing and may be directed in other positions to provide a varying spectrum of take-off and landing configurations, as well as a substantially horizontal position for high speed horizontal flight. Use of the control surface in the ducted propulsion assembly provides VTOL capability in a very small environment. The environment is not required to be prepared in any special manner. During horizontal flight, the wings provide the lift, which is more efficient than a propeller providing lift. The present invention takes advantage of a center line propulsion, so that there are no asymmetric propulsion loads.
摘要:
An apparatus and method control the shape of a structure with one or more surfaces and internal actuators. A plurality of translational actuators are capable of extending and contracting. The structure can have any number of controllable surfaces, including one. The shapes of the surfaces are controlled by computing the actuator strokes or loads required for achieving specified surface deflections. There are two methods for accomplishing this control. In the actuator stroke-control method, the surface deflections, or deflection errors for closed-loop control, are multiplied by a stroke-control gain matrix which is a function of the properties of the structure with the actuators absent. In the actuator load-control method, the surface deflections, or deflection errors for closed-loop control, are multiplied by a load-control gain matrix which is a function of the properties of the structure with the actuators absent. The control gain matrices minimize the surface shape errors. Ratios of stresses to allowable values are continuously monitored throughout the structure and corrective action is taken to prevent an overstressed condition.
摘要:
A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively adjacent fixed wing inboard or center root sections fixedly attached to the fuselage for free rotation about a spanwise access. Horizontal and vertical tail surfaces are located at the rear end of a boom assembly rotatably connected to the fuselage. A gearing or screw rod arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage in relation to the tail boom assembly to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
摘要:
The aircraft includes a free wing freely pivotally supported about a spanwise axis for flight in a free wing mode and lockable in selected predetermined, fixed angles of incidence with respect to a fuselage for flight in a fixed wing mode. The predetermined angle of incidence in the fixed wing flight mode is selected to provide sufficient lift for flying the aircraft at low speeds as necessary for takeoff and landing. The aircraft can be converted in flight between the free wing or conventional fixed wing aircraft flight modes. A control system is provided for selectively enabling or disabling the elevators on the horizontal stabilizer and the wing flaps.