Abstract:
A gas flow correction sensor for producing an output signal proportional to the ratio between line pressure and line temperature for gas flowing in a line, for use in correcting the output of a volumetric flow meter connected in the line, comprises a sealed chamber containing a fixed mass of a reference gas. The sealed chamber includes a bellows portion subjected to line pressure, thus maintaining the reference gas at line pressure. Additionally, the sealed chamber is thermally insulated and includes at least a portion disposed in a thermowell immersed in the line, so as to maintain the reference gas at line temperature. A vibrating quartz density sensor is also mounted in the thermowell, so as to produce an output signal whose frequency is proportional to the density of the reference gas, which can be shown also to be proportional to the desired line pressure to line temperature ratio.
Abstract:
In a method for measuring the volume of a liquid flow through a measuring chamber (2) during a measuring period, a pulse generator (12) is caused to emit a number of pulses corresponding to the volume. In the measurement, the measuring period is divided into a number of measuring intervals. During each measuring interval, the pulses from the pulse generator (12) are detected, each detected pulse is multiplied by a flow correction factor, the corrected pulse values are added to a summation variable, and this summation variable is multiplied by a volume conversion factor for determining the liquid volume. The separate determined liquid volumes are thereafter summed up for all measuring intervals during the measuring period.A measuring apparatus for measuring the volume of a liquid flow through a measuring chamber (2) has a pulse generator (21, 23) for generating a number of pulses corresponding to the volume, has time base means (33) for dividing the measuring period into measuring intervals, memory means (34) for storing one or more correction factors, pulse-correcting computing means (24, 25) for multiplying each detected pulse by said one or more correction factors, adder means (26, 27) for adding the corrected pulse values, and multiplier means (35) for multiplying the added corrected pulse values by a volume conversion factor.
Abstract:
A method and apparatus is disclosed for measuring flowing gas and at least one variable for calculating gas flow corrected to a base value of that variable. Illustratively, the measured variables are temperature and pressure, and devices are employed for measuring the temperature T.sub.f and pressure P.sub.f of the gas flowing through a conduit, and means in the illustrative form of a flow meter for measuring the volume V.sub.f of the gas flowing through the conduit. Calculating means in the illustrative form of a programmed microprocessor is employed to calculate the corrected gas volume to base conditions in accordance with an expression including the supercompressibility factor. The supercompressibility factor is calculated according to an equation involving only whole number exponentiation and a selected set of coefficients. The calculation means selects a particular set of these coefficients in accordance with indications of pressure and/or temperature.
Abstract:
Apparatus for obtaining the mass flow rate of engine aspirated air. An ultrasonic transducer measures the density of atmospheric air, while coincidentally measuring the velocity of air within a venturi of an engine air induction tube. The two individual measurements produce a single electric output signal proportional to the mass flow rate of air.
Abstract:
In a flow rate control apparatus, pressure of a primary, or controlled, liquid is reduced without application of shear forces thereto. Each of first and second piston and cylinder assemblies has a first port on one side of the piston and a second port on the other side. A secondary fluid path between the two second ports contains a controlling fluid directed through a pressure reducing valve. The rate of flow of the primary fluid from the discharge cylinder is controlled by the rate of flow of the secondary fluid through the pressure reducing valve. A four way valve couples the controlled liquid at relatively high pressure through the first port in a first cylinder, and the controlled liquid is discharged at relatively low pressure from the first port in the second cylinder. The first and second pistons are rigidly connected to assure synchronized motion and accurate metering of the controlled liquid and to provide for driving of both pistons in response to input pressure of the controlled liquid.
Abstract:
A flow rate measuring device comprising a counter for counting pulses from a flow rate detector, a detector for detecting the temperature of a fluid to be measured, a difference detector for calculating the difference between the measured temperature from the temperature detector and a reference temperature, an arithmetic operation unit for executing predetermined arithmetic operations using the counted value from the counter, the temperature difference from the difference detector and the constant based on specific gravity, and a pulse generator for generating pulses based on the signal from the arithmetic operation unit.
Abstract:
The present invention relates to a flow meter, particularly for liquids, having an impeller wheel arranged in a vertical tubular measurement bore and acted on by a flow stream. The impeller wheel has a bearing shaft, the ends of which are rotatably mounted in axially and radially guiding bearings respectively. The impeller wheel has one or more vanes, the flow-on attack surfaces of which are inclined to the direction of oncoming flow of the stream. A sensor detects the rotary frequency of the impeller wheel. A movable wall subdivides a chamber into two chamber halves, one of which communicates with an inlet connection and the measurement bore upstream of the impeller and the other one of which communicates with an outlet connection and the measurement bore downstream of the impeller. In order, with such a flow meter, to make possible in simple manner and at low cost of manufacture a high precision of measurement over the entire measurement range, the bearing shaft is arranged with axial play between the bearings and the impeller wheel is acted on from below by the flow. In this connection, the attack surfaces are so inclined with respect to the direction of flow that the force component, directed in the approach direction, of the force exerted by the flow stream on the impeller wheel is equal to or greater than the weight of the impeller wheel.
Abstract:
Apparatus and method are disclosed for measuring the volume of a chamber of a meter prover. The meter prover includes a piston adapted for rectilinear movement within said cylinder between a first position and a second position. The volume measuring apparatus comprises an antenna disposed within the chamber and a generator coupled to apply electromagnetic energy to the antenna whereby electromagnetic waves are emanated into the chamber. A detector is coupled to the antenna to detect electromagnetic energy reflected from the chamber and is in turn coupled to a resonant detector in the form of a cathode ray tube, whereby a minimum of the level of the electromagnetic energy may be determined. Further, a frequency detector in the form of a counter, is connected to the output of the generator to detect the frequencies of the generator output at which the minimum level occurs as observed upon a display device corresponding to the establishment of a resonant standing wave within the chamber of the meter prover. The frequency(ies) at which the resonant standing waves are established within the chamber, in turn determine the volume of the meter prover chamber. The electromagnetic field(s) are generated within the chamber of a mode selected so that at a resonant condition within the chamber, the electric and magnetic component fields of the electromagnetic field have a defined relation to the dimensions of the chamber of regular geometry, illustratively, a right circular cylinder.
Abstract:
A method and apparatus for reducing the peak loading requirements of a gas utility allow the use of a unit rate structure which depends upon the ambient outside temperature. The apparatus employs an ambient temperature measuring device and a recording element responsive thereto for providing an output reading of gas consumption which takes into account the outside ambient temperature. Thereby, a differential rate structure dependent upon the measured ambient outside temperature can be implemented. In one embodiment, the recording element has a meter which provides an actuating signal for each occurrence of a measured volumetric consumption of gas. The actuating signal is directed to one of a plurality of counters depending upon the measured outside ambient temperature. The utility then uses a different rate for each of the several counters.
Abstract:
An intake air density sensor for an internal combustion engine comprises a receptacle in the form of a flask including a spherical chamber and a tubular portion having a very fine diameter, a pressure responsive casing at least whose part is made of an elastomeric membrane and communicated with the receptacle, a gas and a conductive liquid hermetically sealed in the receptacle and pressure responsive casing, respectively, so as to locate a boundary surface between the gas and liquid in the tubular portion, and a resistor longitudinally arranged in the tubular portion so as to form short-circuiting means by the conductive liquid for the resistor, thereby detecting densities of a fluid to be measured by converting variations in pressure of fluid into variations in volume of the pressure responsive casing or sealed gas and further converting variations in position of the boundary surface of the conductive liquid into values of electrical resistances of the resistor without affecting the positional movement of the boundary surface to convert variations in density of the fluid into electrical signals with high detecting sensitivities and high accuracies.