摘要:
A method and device for determining the flow rate of the wet gas using real-time THz imaging and for determining the flow rate of solid contaminants in oil and gas pipelines using real-time Tera Hertz (THz) imaging is disclosed. A THz imaging device for real-time multiphase flow measurement comprises a THz imaging subsystem having a THz source and an imaging capturing a captured image. Wherein the imaging having at least a two dimensional array of pixels, wherein the multiphase flow may comprise at least one of oil, water, gas and solid contaminants. Further, a method for real-time measurement of a wet gas flow of a gas is disclosed. The flow of gas comprising at least one of a fluid phase or solid contaminants in the gas flow. The method comprises at least the steps of using a THz subsystem on the gas flow to acquire a captured image and further processing the captured image to determine the flow rate of the flow of gas.
摘要:
An automated process and accompanying apparatus simultaneously separates and measures the flow rate of any multiphase mixture of immiscible fluids. Such separation and measurement can occur in a single vessel, or multiple vessels. Liquid levels, together with a material balance analysis, are utilized to determine constituent liquid flow rates. The vessel(s) can be remotely operated and monitored in real time, while also allowing for automated or manual calibration.
摘要:
The present invention refers to a method for the isokinetic sampling of liquids and gases present in streams having many fluid phases, and to an apparatus suitable for achieving it. The method and apparatus have application in particular in the field of oil extraction, wherein, after the extraction of liquid and gaseous hydrocarbons possibly accompanied by water and suspended solids, it is necessary to know the composition of the mixture extracted and also the flow rate of the single phases.
摘要:
A measuring arrangement for determining flow velocity of at least one liquid phase and/or a gas phase of a vapor or a fluid composed of a liquid and a gaseous phase or a supercritical fluid, comprising a measuring tube, on or in which at least one sensor element of at least a first flow measuring device is arranged for measuring the liquid phase or the gas phase, wherein the measuring tube has at least an inflow region and an outflow region, wherein between these two regions a central region is arranged, whose measuring tube cross section has a greater area than the area of the measuring tube cross section of the outflow region or of the inflow region, and method for ascertaining flow of phases of a vapor or of a fluid composed of a liquid and a gaseous phase, or a supercritical fluid.
摘要:
Systems and methods are described for liquid removal to increase the accuracy of gas flow meters, such as venturi meters. Systems and methods include a liquid knockout drum, an impingement plate, a drum separator, and a check valve.
摘要:
The present invention provides a device for measuring properties of a fluid flow in a pipe, comprising a first (1), second (2) and third pipe section (3), and where the first pipe section (1) comprises a fluid flow modifying feature arranged such that, during use, a liquid part of the fluid flow will form an annular layer (4) at an inner wall of the second pipe section (2), and the second pipe section (2) is arranged downstream of the first pipe section (1) and comprises at least one near field probe (5) having a first frequency range, and at least one full volume field probe (6) having a second frequency range, the upper limit of the first frequency range being lower than the lower limit of the second frequency range; the third pipe section (3) is arranged downstream of the second pipe section (2) and comprises a resonance enabling element (8), such that said element (8) and at least the second pipe section (2) provides a resonator able to capture parts of the frequency range of the full volume field probe (6).
摘要:
An automated calibration device that comprises a tube for trapping a multiphase sample between three ultrasound (US) transducer pairs wherein each of the three transducer pairs is positioned to measure a different fraction of the multiphase sample.
摘要:
Systems and methods are provided for accurately measuring and allocating treated oil. Separators can be modified to include automatic control systems utilizing active flow controls and level sensors. The automatic control systems can be configured to cause oil to flow at a rate and with a duration sufficient to accurately measure the amount of oil transferred from the separator. The systems and methods also provide for a method of correcting for oil density variations. The systems and methods also allow for fail-safe operations by having the active flow controls fail in an open position allowing pre-existing passive flow control valves to operate normally.
摘要:
A method to determine a mass proportion of a first component of a multi-component fluid is provided that includes separating the first component in a separation step at least in part from the multi-component fluid, determining at least two reference flow rates, selected from a flow rate of the multi-component fluid supplied to the separation step, a flow rate of a residual fluid resulting from the separation of the first component, and a flow rate of a separation fluid accumulating in the separation step, and determining the mass proportion of the first component from the selected reference flow rates, taking into account a non-separated residual content of the first component in the residual fluid. An extraneous content of an additional separated component of the multi-component fluid is additionally taken into account.
摘要:
Disclosed is a system and an associated valve assembly that are adapted to increase the efficiency of an upstream water meter. By way of the valve assembly entrained water bubbles can be removed from a water supply. This, in turn, increases the density of the water running through the water meter. This ensures that the water meter is not inaccurately including entrained air as metered water. The result is more accurate water readings and reduced utility bills.