Abstract:
The invention discloses an authentication system of objects, physical or virtual, comprising an authentication mark and, as an option, an authentication message, generated by an authentication device and controlled by a verification/decoding device in combination with an authentication server managed by an authenticating authority. The authentication mark in the tag/message may comprise GNSS RF raw signals and/or GNSS raw data. The authentication mark comprises data and may be formatted, for example, in a bitstream, a data stream, a QRCode, an RFID tag or an NFC tag. The authentication server is configured to cause a GNSS signals simulator to reproduce the GNSS RF raw signals and/or GNSS raw data at the location and time interval of production of the object and to compare the results of the simulation to the authentication mark comprising data received directly from the authentication device or received from a verification device and issue a validation, a denial or a doubt from the comparison.
Abstract:
The invention relates to a daytime and nighttime stellar sensor (1), comprising: at least one video camera (2) suitable for taking images of stars (3) in the sky; and a control unit (4), characterized in that it furthermore comprises: a polarizer (5), the control unit (4) being configured: to obtain an estimation of a direction of polarization of the polarized light received from the sky by the video camera (2); and to control the orientation of the polarizer (5) so that said polarizer (5) filters polarized light from the sky directed toward the video camera (2) and having said polarization direction.
Abstract:
The invention discloses an antenna assembly comprising one or more sensors, possibly a fish-eye camera which produces images of the sky above the antenna, said images being processed to identify open sky and occulted sky areas, said identification being used to generate an antenna gain pattern shape wherein null zones are placed on the occulted sky areas, so as to eliminate the GNSS signals which are affected by multi-path reflection. The antenna assembly of the invention may be used with any GNSS receiver of the prior art. No specific data on the location of the receiver or its orientation is needed to perform the method of the invention, while in some embodiments, it may be useful to send some information on the number of satellites in view in the open sky.
Abstract:
The single-use valve to be installed on a line for transporting a fluid includes a tubular body, which is intended to be placed on the line and contains a mobile element that is able to take up two positions in the tubular body. Each position allows the fluid to pass through the tubular body or not, one being a standby position, while the other is an active position. Inside the tubular body, a driver able to move the mobile element such that the mobile element passes from its standby position to the active position. The driver includes a pretensioned elastic device. Outside the tubular body, a device for maintaining the pretension connects to a controller able to deactivate the device for maintaining the tension.
Abstract:
A deformable mirror comprises a deformable membrane extending at rest in a first plane and having a reflecting front face and a back face opposite the front face, a supporting structure, an actuator having a first and second end, the first end fixed to the supporting structure, the second end displaced relative to the first end on a first axis substantially at right angles to the first plane to exert, on the back face, an axial load on the first axis, to locally deform the deformable membrane. The mirror comprises a plate that is substantially flat in a second plane substantially parallel to the first plane, positioned between the actuator and deformable membrane, linked to the back face and deformed when the actuator exerts the axial load, and the plate is rigid in the second plane to take up loads applied to the mirror in the second plane.
Abstract:
The invention concerns a helical antenna comprising a shape of revolution and a plurality of radiating strands helically wound around the shape of revolution, characterized in that each radiating strand is defined by a repetition of a fractal pattern comprising segments formed by a sinusoidal curve.
Abstract:
An arrangement of a biconical annular seal having a laid down V shaped cross-section, in an annular groove having a trapezoid shaped cross-section, a small base of the trapezoid corresponding to a cylindrical bottom of the groove and being radially inwardly open at a great base of the trapezoid. The seal includes a radially outer annular heel and two generally conical annular wings extending radially inwardly from the heel, an inner radial end of each wing being axially bearing against an associated wall of the groove. The seal is mounted in the groove such that the heel of the seal is located radially distal to a bottom of the groove.
Abstract:
A bandpass filter for microwave-frequency wave which is frequency tunable, comprises at least one resonator. Each resonator comprises a cavity having a conducting wall substantially cylindrical in relation to an axis Z, and at least one dielectric element disposed inside the cavity. The resonator resonates on two perpendicular polarizations having respectively distributions of the electromagnetic field in the cavity that are deduced from one another by a rotation of 90° and according to one and the same frequency. The wall of the cavity comprises an insert section facing the element having a different shape from a section not situated facing the element. The insert section and the element are able to perform a rotation with respect to one another in relation to the axis Z so as to define at least a first and a second relative position differing by an angle substantially equal to 45° to within 20°.
Abstract:
A method includes estimating the position of the moving object on the basis of the reception of navigation signals emitted by a constellation of satellites, the navigation signals being modulated by a code and the receiver comprising a local replica of the code. The determination of the confidence indicator consists in estimating a speed of displacement of the receiver over an identified trajectory segment, deducing therefrom a Doppler delay function corresponding to the motion of the receiver, in correcting the auto-correlation function of the GNSS navigation signal received from each satellite of the constellation by means of the delay function, in comparing the corrected auto-correlation function with a theoretical auto-correlation function by applying a quadratic criterion corresponding to the confidence indicator.
Abstract:
A radionavigation signal tracking device comprises a first and a second tracking stage for radionavigation signals. The first tracking stage comprises a first carrier phase-locked loop. The latter produces a first error signal arising from a phase difference between the first carrier and its replica. The phase of the replica of the first carrier is adjusted with the first error signal. The second tracking stage comprises a second carrier phase-locked loop. The latter produces a second error signal arising from a difference between the first phase difference and a phase difference between the second carrier and the replica thereof. The phase of the replica of the second carrier is adjusted with the first and second error signals.