Abstract:
An OTDR device and method for characterizing one or more events in an optical fiber link are provided. A plurality of light acquisitions is performed. For each light acquisition, test light pulses are propagated in the optical fiber link and the corresponding return light signals from the optical fiber link are detected. The light acquisitions are performed under different acquisition conditions, for example using different pulsewidths or wavelengths. Parameters characterizing the event are derived using the detected return signal from at least two of the plurality of light acquisitions.
Abstract:
There are provided a method and a system for characterizing the CMRR of an ICR under test, which employ highly coherent light from two continuous-wave (CW) single-frequency lasers whose respective optical frequencies mutually differ by an offset defining an “Intermediate Frequency” (fIF) in the rf electrical baseband. The method involves the coherent mixing of light from these two lasers in the ICR under test. A “tone” in the rf electrical baseband at frequency fIF is generated by the beating of light from the two single-frequency lasers as they interfere on the photodetectors of the ICR. The resulting tone at frequency fIF in the output electrical signals of the ICR is then detected and analyzed to characterize the CMRR of the ICR.
Abstract:
There is provided a mating assembly for mating a fiber-optic termination comprising a fiber-optic ferrule to an optical test instrument. The mating assembly comprises: a holding body having internal tubular dimensions substantially complementary to corresponding external dimensions of the fiber-optic ferrule of said fiber-optic termination, to hold the fiber-optic ferrule in a given alignment relative to the optical test instrument; and at least one deformable elastomeric feature extending inwardly in the holding body to frictionally engage on a smooth external surface of said fiber-optic ferrule and to provide friction thereon to retain said fiber-optic ferrule.
Abstract:
There are provided a method and a system for characterizing the CMRR of an ICR under test, which employ highly coherent light from two continuous-wave (CW) single-frequency lasers whose respective optical frequencies mutually differ by an offset defining an “Intermediate Frequency” (fIF) in the rf electrical baseband. The method involves the coherent mixing of light from these two lasers in the ICR under test. A “tone” in the rf electrical baseband at frequency fIF is generated by the beating of light from the two single-frequency lasers as they interfere on the photodetectors of the ICR. The resulting tone at frequency fIF in the output electrical signals of the ICR is then detected and analyzed to characterize the CMRR of the ICR.
Abstract:
There is provided a bi-directional optical reflectometric method for characterizing an optical fiber link. The method comprises: performing a plurality of forward-direction light acquisitions from one end of the optical fiber link and performing a plurality of backward-direction light acquisitions from the opposite end, wherein each light acquisition is performed by propagating at least one test light signal corresponding to given spatial resolution and detecting corresponding return light so as to obtain a reflectometric trace representing backscattered and reflected light as a function of a distance on the optical fiber link, and wherein said plurality of forward-direction light acquisitions and said plurality of backward-direction light acquisitions are each performed with mutually different spatial resolutions; and deriving a value of at least one parameter characterizing an event along said optical fiber link at least using a forward-direction light acquisition and a backward-direction light acquisition performed with mutually different spatial resolutions.
Abstract:
An OTDR device and method for characterizing one or more events in an optical fiber link are provided. A plurality of light acquisitions is performed. For each light acquisition, test light pulses are propagated in the optical fiber link and the corresponding return light signals from the optical fiber link are detected. The light acquisitions are performed under different acquisition conditions, for example using different pulsewidths or wavelengths. Parameters characterizing the event are derived using the detected return signal from at least two of the plurality of light acquisitions.
Abstract:
There is provided a chromatic dispersion measurement method and system for characterizing an optical fiber link under test. From a proximal end of the optical fiber link, at least one OTDR acquisition is performed, wherein each OTDR acquisition is performed by propagating in the optical fiber link under test, at least one test signal comprising a plurality of light pulses in accordance with a known sequence of pulses and detecting corresponding return light signal from the optical fiber link so as to obtain a trace representing backscattered and reflected light as a function of distance in the optical fiber link under test, and wherein said test signals have mutually different wavelengths. For each test signal and corresponding wavelength, a position of the reflective peak associated with a remote end of the optical fiber link is extracted from the return light signal by calculating a cross-correlation between the known sequence of pulses and the acquired trace. A value of a chromatic dispersion coefficient associated with said optical fiber link is then calculated from values of the extracted positions and corresponding wavelengths.
Abstract:
There is provided a method of measuring the PMD of an optical fiber under test (FUT). A polarization-sensitive optical time domain reflectometer (POTDR) is used to inject into the FUT and from a proximal end thereof, a test signal comprising a series of repeated light pulses and detecting a corresponding polarization-analyzed return light signal coming back from the optical fiber and representing back-reflected light from a light reflector connected to a distal end of the FUT, said return light signal comprising repeated reflected light pulses. The plurality of polarization-sensitive acquisitions defines at least one pair of acquisitions performed with mutually different but closely-spaced wavelengths and substantially the same state of polarization (SOP), a center of said wavelengths defining a center wavelength for said at least one pair. The process may be repeated for a plurality of pairs of acquisitions performed with at least one of a plurality of mutually-different center wavelengths and a plurality of mutually-different states of polarization (SOP). For each said acquisitions, respective amplitudes of at least part of the repeated reflected light pulses are averaged so as to obtain an averaged reflected power. The PMD is obtained by, for each said pairs of said acquisitions, computing a value of a difference between the two averaged reflected powers corresponding to said pair, followed by the mean-square value of computed values of difference over said at least one of a plurality of mutually-different center wavelengths and a plurality of mutually-different states of polarizations (SOPs) and, from said mean-square value, calculating a value of the PMD for the optical fiber under test.
Abstract:
Systems, methods, and devices for testing optical fibers are provided. According to one implementation, an optical fiber testing apparatus may include an optical test unit configured to obtain a characterization of an optical fiber to be tested. Additionally, the optical fiber testing apparatus may include a visible light source and an analysis and control device. For example, the analysis and control device may be configured to adapt the visible light source to a specific power level based on the characterization of the optical fiber.