摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. Marketing companies that sell lists compile those lists by searching one or more databases for names and/or businesses that match certain criteria. Those marketing companies can use the CSoW/CSoSW modeling approach to show predicted spend and/or revenues for each company on a list. This makes the list more valuable to list buyers.
摘要:
Share of Wallet (“SOW”) is a modeling approach that utilizes various data sources to provide outputs that describe a consumers spending capability, tradeline history including balance transfers, and balance information. These outputs can be appended to data profiles of customers and prospects and can be utilized to support decisions involving prospecting, new applicant evaluation, and customer management across the lifecycle. “Best customer” models can correlate SOW outputs with various customer groups for targeted marketing.
摘要:
Share of Wallet (“SOW”) is a modeling approach that utilizes various data sources to provide outputs that describe a consumers spending capability, tradeline history including balance transfers, and balance information. These outputs can be appended to data profiles of customers and prospects and can be utilized to support decisions involving prospecting, new applicant evaluation, and customer management across the lifecycle. The outputs include the size of the consumer's spending wallet over a particular time period, the total number of the consumer's revolving cards, the consumer's revolving balance, the consumer's average pay-down percentage for revolving cards, total number of the consumer's transacting cards, the consumer's transacting balance, a number of balance transfers transacted by the consumer, the total amount of the consumer's balance transfers, the consumer's maximum revolving balance, the consumer's maximum transacting balance, the consumer's credit limit, size of the consumer's revolving spending, and the size of the consumer's transacting spending.
摘要:
A generalized pattern recognition is used to identify faults in machine condition monitoring. Pattern clusters are identified in operating data. A classifier is trained using the pattern clusters in addition to annotated training data. The operating data is also used to cluster the signals in the operating data into signal clusters. Monitored data samples are then classified by evaluating confidence vectors that include substitutions of signals contained in the training data by signals in the same signal clusters as the signals contained in the training data.
摘要:
In a machine condition monitoring technique, a sensor reading is filtered using a switching Kalman filter. Kalman filters are created to describe separate modes of the signal, including a steady mode and a non-steady mode. For each new observation of the signal, a new mode is estimated based on the previous mode and state, and a new state is then estimated based on the new mode and the previous mode and state. In the steady mode, evolution covariances of both the observed signal and the rate of change of that signal are low. In the non-steady mode, the evolution covariance of the observed signal is set to a higher value, permitting the observed signal to vary widely, while the evolution covariance of the rate of change of the signal is maintained at a low level.
摘要:
The present invention generally relates to financial data processing, and in particular it relates to credit scoring, consumer profiling, consumer behavior analysis and modeling. More specifically, it relates to risk modeling using the inputs of credit bureau data, size of wallet data, and, optionally, internal data.
摘要:
The present invention generally relates to financial data processing, and in particular it relates to credit scoring, consumer profiling, consumer behavior analysis and modeling. More specifically, it relates to risk modeling using the inputs of credit bureau data, size of wallet data, and, optionally, internal data.
摘要:
The present disclosure generally relates to financial data processing, and in particular it relates to lender credit scoring, lender profiling, lender behavior analysis and modeling. More specifically, it relates to rating lenders based on data derived from their respective consumers. Also, the present disclosure relates to rating consumer lenders based on the predicted spend capacity of their consumers.
摘要:
The present disclosure generally relates to financial data processing, and in particular it relates to lender credit scoring, lender profiling, lender behavior analysis and modeling. More specifically, it relates to rating lenders based on data derived from their respective consumers. Also, the present disclosure relates to rating consumer lenders based on the predicted spend capacity of their consumers.
摘要:
The present invention generally relates to financial data processing, and in particular it relates to lender credit scoring, lender profiling, lender behavior analysis and modeling. More specifically, it relates to rating lenders based on data derived from their respective consumers. Also, the present invention relates to rating consumer lenders based on the predicted spend capacity of their consumers.