Abstract:
The present invention is related to an electrochemical cell comprising an anode of a Group IA metal and a cathode of a mixed phase metal oxide prepared from a combination of starting materials comprising vanadium oxide and a mixture of at least one of a decomposable silver-containing constituent and a decomposable copper-containing constituent. The starting materials are mixed together to form a homogeneous admixture that is not further mixed once decomposition heating begins to form the product active material. The present cathode material is particularly useful for implantable medical applications.
Abstract:
A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one phosphonate additive having the formula (R1O)P(═O) (OR2) (R3) provided in the electrolyte. In the phosphonate formula, R3 is a hydrogen atom and wherein at least one, but not both, of R1 and R2 is a hydrogen atom and the other of R1 and R2 is an organic group containing 1 to 13 carbon atoms. Or, at least one of R1 and R2 is an organic group containing at least 3 carbon atoms and having an sp or sp2 hybridized carbon atom bonded to an sp3 hybridized carbon atom bonded to the oxygen atom bonded to the phosphorous atom, or at least one of R1 and R2 is an unsaturated inorganic group.
Abstract:
A separator for shutting down current flow in a lithium or other alkali metal battery during a short circuit condition to prevent cell rupture. In one form, the separator comprises a layer of microporous polyethylene film, or other suitable microporous film having a melting point which is less than about 135° C., for providing good puncture resistance and for melting at a low temperature for increasing the margin of safety without significantly sacrificing performance. The separator also includes a layer of non-woven polypropylene, or other suitable non-woven material having a melting point which is at least about 10° C. higher than the melting point of the microporous film, to provide good strength and tear resistance so as to maintain physical integrity of the separator so that the short circuit condition is not worsened. In another form the separator comprises the combination of polyethylene on one of the battery electrodes, i.e. anode or cathode, and polypropylene on the other of the battery electrodes.
Abstract:
A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one sulfite additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an alkyl sulfite compound.
Abstract:
The present invention is directed to an unexpected benefit in a lithium cell derived from using a combination of silver vanadium oxide prepared in a temperature range of about 450° C. to about 500° C. activated with a nonaqueous electrolyte having a passivation inhibitor additive selected from a nitrite, a nitrate, a carbonate, a dicarbonate, a phosphonate, a phosphate, a sulfate and hydrogen fluoride, and mixtures thereof. The benefits include additional battery life resulting from a reduction in voltage delay and RDC build-up. A preferred electrolyte is 1M LiAsF6 in a 50:50 mixture, by volume, of PC and DME having dibenzyl carbonate added therein.
Abstract:
A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one nitrite additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an alkyl nitrite compound.
Abstract:
An electrochemical cell comprising a medium rate electrode region intended to be discharged under a substantially constant drain and a high rate electrode region disposed in a jellyroll wound configuration intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electrolyte.
Abstract:
A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one nitrate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture that includes ethylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. The preferred additive is an organic alkyl nitrate compound.
Abstract:
A power source including two alkali metal/transition metal oxide cells discharged in parallel to power an implantable medical device is described. The first cell powers the medical device in both a device monitoring mode, for example in a cardiac defibrillator for monitoring the heart beat, and a device actuation mode for charging capacitors requiring high rate electrical pulse discharging. At such time as the first cell is discharged to a predetermined voltage limit, the first cell is disconnected from pulse discharge duty and only used for the device monitoring function. At that time, the second cell is utilized for the high rate electrical pulse discharging function. When the first cell reaches 100% efficiency or a present voltage limit, the second cell then takes over both device monitoring and device actuation functions. In that manner, a greater average discharge efficiency is realized from the two cells than is capable of being delivered from a single cell of similar chemistry.
Abstract:
The present invention relates to an improved method for synthesizing unsymmetric linear organic carbonates comprising the reaction of two symmetric dialkyl carbonates, R.sup.1 and R.sup.2, in the presence of a nucleophilic reagent or an election donating reductant as a catalyst, wherein R.sup.1 and R.sup.2 can be either saturated or unsaturated alkyl or aryl groups, is described. The presence invention further provides a preparation method for a nonaqueous organic electrolyte having an unsymmetric linear organic carbonate as a co-solvent.