Abstract:
An electrochemical cell comprising a lithium anode, a silver vanadium oxide cathode having a relatively lower basis weight, and an electrolyte activating the anode and the cathode is described. By limiting the amount of cathode active material per unit area (i.e. basis weight) facing the anode in the Li/SVO cell, the magnitude of the passivating film growth at the solid-electrolyte interphase (SEI) and its relative impermeability to lithium ion diffusion is reduced. Therefore, by using a cathode of a relatively low basis weight active material, it is possible to eliminate or significantly reduce undesirable irreversible Rdc growth and voltage delay in the cell and to extend its useful life in an implantable medical device.
Abstract:
A new design for a cathode having a configuration of: SVO/first current collector/CFx/second current collector/SVO is described. The two cathode current collectors are vertically aligned one on top of the other in a middle region or zone of the cathode. This coincides to where a winding mandrel will be positioned to form a wound electrode assembly with an anode. The overlapping region of the two current collectors helps balance the expansion forces of the exemplary SVO and CFx active material layers. This, in turn, helps maintain a planar cathode that is more amenable to downstream processing. The use of two current collectors on opposite sides of an intermediate cathode active material also provides for enhanced reliability when cathodes are wound from the center as they lend structural integrity to outer portions of the wind.
Abstract:
An electrochemical cell comprising an electrode, whether it is the cathode of a primary cell or an anode or a cathode of a secondary cell, comprised of a mixture of a robust, high temperature binder along with a sacrificial decomposable polymer is described. The robust binder remains in the electrode throughout formation and processing, and maintains adhesion and cohesion of the cathode during utilization. The sacrificial decomposable polymer is present during the electrode formation stage. However, it is decomposed via a controlled treatment prior to electrode utilization. Upon subsequent high pressure pressing, the void spaces formerly occupied by the sacrificial polymer provides sites where the electrode active material collapses into a tightly compressed mass with enhanced particle-to-particle contact between the active material particles. For a cathode in a primary cell, for example a Li/SVO cell, the result is believed to be improved rate capability, capacity and stability throughout discharge.
Abstract:
An improved cathode material for nonaqueous electrolyte lithium electrochemical cell is described. The preferred active material is silver vanadium oxide (SVO) coated with a protective layer of an inert metal oxide (MxOy) or lithiated metal oxide (LixMyOz). A preferred coating method is by a sol-gel process. The SVO core provides high capacity and rate capability while the protective coating reduces reactivity of the active particles with electrolyte to improve the long-term stability of the cathode.
Abstract translation:描述了用于非水电解质锂电化学电池的改进的阴极材料。 优选的活性材料是涂覆有惰性金属氧化物(M x O y)或锂化金属氧化物(LixMyOz)的保护层的银钒氧化物(SVO)。 优选的涂布方法是通过溶胶 - 凝胶法。 SVO核提供高容量和速率能力,而保护涂层降低活性颗粒与电解质的反应性,从而提高阴极的长期稳定性。
Abstract:
The current invention relates to the preparation of an improved cathode active material for non-aqueous lithium electrochemical cell. In particular, the cathode active material comprises ε-phase silver vanadium oxide prepared by using a γ-phase silver vanadium oxide starting material. The reaction of γ-phase SVO with a silver salt produces the novel ε-phase SVO possessing a lower surface area than ε-phase SVO produced from vanadium oxide (V2O5) and a similar silver salt as starting materials. Consequently, the low surface area ε-phase SVO material provides an advantage in greater long-term stability in pulse dischargeable cells.
Abstract translation:本发明涉及用于非水电解锂电化学电池的改进的阴极活性材料的制备。 特别地,正极活性物质包括通过使用γ相银钒氧化物原料制备的ε相银钒氧化物。 γ相SVO与银盐的反应产生具有比由氧化钒(V 2 O 5 O 3)产生的ε相SVO更低的表面积的新型ε相SVO >)和类似的银盐作为起始材料。 因此,低表面积ε相SVO材料在脉冲可放电电池的更长的长期稳定性方面提供了优点。
Abstract:
The present invention is directed to a method for analyzing the tail-end behavior of a lithium cell having a solid cathode. The tail of a longer-term accelerated discharge data (ADD) test is estimated from the tail of two shorter-term ADD tests. This is accomplished by first comparing the discharge tails of shorter-term ADD tests and determining angles or rotation that correspond to Rdc growth, and then trending rotation angles versus time to reach a give DoD. For example, the 18-month and 36-month ADD test tails are used to estimate the ADD test tail of a similarly constructed cell subjected to a longer-term ADD test, for example a 48-month ADD test.
Abstract:
A method for powering an implantable medical device with a lithium electrochemical cell having a sandwich cathode electrode of SVO/CFx/SVO active materials is described. A preferred cathode is of a γ-SVO/CFx/γ-SVO or (γ+ε)-SVO/CFx/(γ+ε)-SVO sandwich configuration.
Abstract translation:描述了一种用具有SVO / CF xS / SVO活性材料的夹层阴极的锂电化学电池为可植入医疗装置供电的方法。 优选的阴极是具有γ-SVO / CF x /γ-SVO或(γ+ε)-SVO / CF x /(γ+ε)-SVO三明治 组态。
Abstract:
A hermetically sealed coin cell is described. The coin cell has the opposite polarity terminals isolated from one another by a glass-to-metal seal. Glassing a conductive disc inside a ring of greater diameter and height forms this seal. The height of the ring is equivalent to the desired height of the cell. The disc acts as one cell terminal, which can be positive or negative, and the ring serves as the other terminal. In plan view, both terminals are on the same side of the cell. This allows for easy mounting and connection to an electronic circuit board, and the like.
Abstract:
The invention is directed to an SVO electrochemical cell having high rate capability. The cathode is produced by coating a mixture of an active material, conductive additives, a mixed binder, and an aluminum foil current collector. The mixed binder consists of a mixture of heat treated polyamic acid with PVDF. The use of heat treated polyamic acid maintains adhesion to the conductive current collector while the PVDF portion of the binder gives flexibility. A particularly preferred couple is of a lithium/silver vanadium oxide (Li/SVO) chemistry and the binder mixture enables an active slurry of SVO to be coated onto a current collector without delamination.
Abstract:
The current invention relates to the preparation of an improved cathode active material for non-aqueous lithium electrochemical cell. In particular, the cathode active material comprises &egr;-phase silver vanadium oxide prepared by using a &ggr;-phase silver vanadium oxide starting material. The reaction of &ggr;-phase SVO with a silver salt produces the novel &egr;-phase SVO possessing a lower surface area than &egr;-phase SVO produced from vanadium oxide (V2O5) and a similar silver salt as starting materials. Consequently, the low surface area &egr;-phase SVO material provides an advantage in greater long term stability in pulse dischargeable cells.