摘要:
Systems and methods for subterranean distribution of optical signals on integrated circuits are disclosed. A semiconductor device comprising a multi-layer substrate includes a surface layer and a subterranean layer. Electrical devices are formed in the surface layer. Optoelectronic devices may be formed in the subterranean layer or the surface layer and configured for converting electrical signals to optical signals or converting optical signals to electrical signals. At least one optical waveguide is formed in the subterranean layer and configured for transmitting optical signals through the subterranean layer. Electrical vias may be included for coupling electrical signals between the subterranean layer and the surface layer. In addition, optical vias may be for coupling optical signals between the subterranean layer and the surface layer
摘要:
Various embodiments of the present invention are directed to analyte detection methods and to photonic-based sensors that employ photonic crystal gratings to detect analytes. In one embodiment of the present invention, a photonic-based sensor includes a source, a photonic crystal, and a photodetector. The source is configured to output electromagnetic radiation. The photonic crystal includes a photonic crystal grating positioned to receive the electromagnetic radiation. The electromagnetic radiation interacts with the photonic crystal grating and an analyte situated on or in the photonic crystal grating to produce a transmission spectrum that characterizes the analyte. The photodetector is positioned to detect the transmission spectrum.
摘要:
A device capable of efficiently detecting a single-photon signal includes a matter system, sources of a first beam and a second beam, and a measurement system. The matter system has a first energy level and a second energy level such that a signal photon couples to a transition between the first energy level and the second energy level. The first beam contains photons that couple to a transition between the second energy level and a third energy level of the matter system, and the second beam contains photons that couple to a transition between the third energy level and a fourth energy level of the matter system. The measurement system measures a change in the first or second beam to detect the absence, the presence, or the number of the photons in the signal.
摘要:
Photon resolving detectors with near unit detection efficiency distinguish between a target state including n photons and a target state including n+1 photons by measuring a phase shift that a probe photon state receives in a quantum gate. The detection does not destroy the photons from the target state, so that photons can be used after detection. A system using a non-destructive detector in conjunction with one or more single photon storage systems can store a determined number of photons and release one or more stored photons when required to produce a photon state including a determined number of photons.
摘要:
A general method which extends quadrature techniques to Type I nonlinear optical parametric interactions. In one embodiment, a pair of either uniaxial or biaxial birefringent nonlinear optical crystal elements are serially arranged and oriented so that each crystallographic axis in one conversion means is parallel to the corresponding axis in the second conversion means. Two colinear input fundamental laser fields with parallel polarizations propagate through both crystals, generating a sum-frequency output field. Between the two crystals, a harmonic waveplate is inserted that rotates only the polarization of the sum-frequency field generated in the first conversion means by 90.degree. about its propagation axis. The net polarization rotation of each of the two residual fundamental waves which remain after the interaction in the first conversion means is zero. Therefore, the fundamental waves remain correctly polarized for efficient nonlinear optical conversion in the second conversion means, while the sum-frequency wave is no longer correctly phase-matched for back-conversion. Precise phase-matching may be accomplished either by tilting the assembly about its angularly sensitive axis ("critical" phase-matching) or by adjusting the temperature of the crystals ("non critical" phase-matching). In general, the polarization of the sum-frequency output field will be elliptical, but it can be linearized by tilting the assembly about its angularly insensitive axis.
摘要:
A system for producing two or more laser beams having stable frequency differences between them. The system includes two or more lasers that produce the respective laser beams, an optical resonator, and coupling optics for coupling portions of each laser beam into the resonator. The resonator produces feedback beams that are returned to the respective lasers to provide optical feedback. The feedback causes each laser to lock to a resonant mode of the resonator, to thereby stabilize the frequency difference between the lasers. The linewidth of each laser is also reduced.
摘要:
Tunable resonator systems and methods for tuning resonator systems are disclosed. In one aspect, a resonator system includes an array of resonators disposed adjacent to a waveguide, at least one temperature sensor located adjacent to the array of resonators, and a resonator control electronically connected to the at least one temperature sensor. Each resonator has a resonance frequency in a resonator frequency comb and channels with frequencies in a channel frequency comb are transmitted in the waveguide. Resonance frequencies in the resonator frequency comb are to be adjusted in response to ambient temperature changes detected by the at least one temperature sensors to align the resonance frequency comb with the channel frequency comb.
摘要:
A quantum device includes a resonator and a tuning structure. The tuning structure is made a material such as a chalcogenide and is positioned to interact with the electromagnetic radiation in the resonator so that a resonant mode of the first resonator depends on a characteristic of the tuning structure. The resonator is optically coupled so that a transition between quantum states associated with a defect produces electromagnetic radiation in the resonator. The characteristic of the tuning structure is adjustable after fabrication of the resonator and the tuning structure.
摘要:
An optically integrated magnetic biosensor includes an optically detected magnetic resonance (ODMR) center and a fluidics layer configured to contain a solution comprising analytes, the fluidics layer being disposed over the ODMR center. A light source which generates incident light excites electrons within the ODMR center from a ground state to an excited state and a radio frequency (RF) antenna generates an RF field incident with frequencies which correspond to ground state transitions in the ODMR center. The ODMR center produces emitted light when illuminated by the incident light. The characteristics of the emitted light are influenced by the RF field and magnetic nanoparticles attached to the analytes. A method for detecting analytes using optically detected magnetic resonance is also provided.
摘要:
An optically integrated magnetic biosensor includes an optically detected magnetic resonance (ODMR) center and a fluidics layer configured to contain a solution comprising analytes, the fluidics layer being disposed over the ODMR center. A light source which generates incident light excites electrons within the ODMR center from a ground state to an excited state and a radio frequency (RF) antenna generates an RF field incident with frequencies which correspond to ground state transitions in the ODMR center. The ODMR center produces emitted light when illuminated by the incident light. The characteristics of the emitted light are influenced by the RF field and magnetic nanoparticles attached to the analytes. A method for detecting analytes using optically detected magnetic resonance is also provided.