Abstract:
Certain aspects of the present disclosure relate to a method for iterative decoding with re-transmissions of data and to a method for iterative decoding with soft decision directed channel estimation.
Abstract:
Estimating a channel impulse response (CIR) for a wireless transmission, for example a multimedia broadcast multicast services single frequency network (MBSFN) transmission, may be performed by a receiver of an wireless subframe, without requiring operational memory in excess of what is needed for CIR estimation of unicast signaling, while providing enhanced delay spread coverage. The wireless subframe may be a MBSFN subframe. The receiver may form an aggregate vector of pilot tones extracted from an OFDM reference symbol of an wireless subframe. The receiver may subsample the aggregate vector to obtain a plurality of sub-vectors each comprising a distinct subsampling phase. The receiver may process the plurality of sub-vectors using an inverse fast Fourier transform to obtain time domain representations of each of the sub-vectors. The receiver may combine the time domain representations in various ways to obtain a CIR estimate for the wireless subframe.
Abstract:
Certain aspects of the present disclosure propose a method for estimating a channel utilizing Sparse Bayesian Learning (SBL) algorithm. The proposed method employs a Basis expansion (e.g., polynomial) channel model, and iteratively performs SBL algorithm to adjust parameters of the channel model.
Abstract:
Quick frequency tracking (QFT), quick time tracking (QTT), and non-causal pilot filtering (NCP) are used to detect sporadically transmitted signaling, e.g., paging indicators. For QFT, multiple hypothesized frequency errors are applied to an input signal to obtain multiple rotated signals. The energies of the rotated signals are computed. The hypothesized frequency error with the largest energy is provided as a frequency error estimate. For QTT, coherent accumulation is performed on the input signal for a first set of time offsets, e.g., early, on-time, and late. Interpolation, energy computation, and non-coherent accumulation are then performed to obtain a timing error estimate with higher time resolution. For NCP, pilot symbols are filtered with a non-causal filter to obtain pilot estimates for one antenna for non-STTD and for two antennas for STTD. The frequency and timing error estimates and the pilot estimates are used to detect the signaling.
Abstract:
Quick frequency tracking (QFT), quick time tracking (QTT), and non-causal pilot filtering (NCP) are used to detect sporadically transmitted signaling, e.g., paging indicators. For QFT, multiple hypothesized frequency errors are applied to an input signal to obtain multiple rotated signals. The energies of the rotated signals are computed. The hypothesized frequency error with the largest energy is provided as a frequency error estimate. For QTT, coherent accumulation is performed on the input signal for a first set of time offsets, e.g., early, on-time, and late. Interpolation, energy computation, and non-coherent accumulation are then performed to obtain a timing error estimate with higher time resolution. For NCP, pilot symbols are filtered with a non-causal filter to obtain pilot estimates for one antenna for non-STTD and for two antennas for STTD. The frequency and timing error estimates and the pilot estimates are used to detect the signaling.
Abstract:
Schemes to time-align transmissions from multiple base stations to a terminal. To achieve time-alignment, differences between the arrival times of transmissions from the base stations, as observed at the terminal, are determined and provided to the system and used to adjust the timing at the base stations such that terminal-specific radio frames arrive at the terminal within a particular time window. In one scheme, a time difference between two base stations is partitioned into a frame-level time difference and a chip-level time difference. Whenever requested to perform and report time difference measurements, the terminal measures the chip-level timing for each candidate base station relative to a reference base station. Additionally, the terminal also measures the frame-level timing and includes this information in the time difference measurement only if required. Otherwise, the terminal sets the frame-level part to a predetermined value (e.g., zero).
Abstract:
A circuit and algorithm are disclosed for a step2 search of a three step search of synchronization channels in a W-CDMA system. A mobile terminal of the CDMA system includes an RF downconverter for receiving I and Q signals. A searcher, responsive to the I and Q signals, includes a first correlator for correlating the I and Q signals with a primary synchronization code on a primary synchronization channel, and a second correlator for correlating I and Q signals with a secondary synchronization code on a secondary synchronization channel. The correlated I and Q signals are added for each of the secondary synchronization codes. An energy calculator and a maximum energy detector use the correlated I and Q signals of both the primary and secondary synchronization channels to detect the most likely scrambling code group of secondary synchronization codes.
Abstract:
A method and apparatus for improved initial cell acquisition with reduced frequency error impact. The method determines the slot timing of a transmission, identifies the primary scrambling code and frame timing using the common pilot channel, and provides a path profile using a pseudorandom noise (PN) search. An apparatus using a cell searcher that performs the method is also described.
Abstract:
Erasure detection and power control are performed for an intermittently active transport channel with unknown format. A receiver processes each received block and determines whether it passes or fails CRC. For each received block with CRC failure, the receiver performs erasure detection by computing a symbol error rate (SER) and energy of the received block, comparing the computed SER against an SER threshold, comparing the computed energy against an energy threshold, and declaring an erasure if the computed SER is less than the SER threshold and the computed energy exceeds the energy threshold. The SER and energy thresholds may be adjusted based on the average SER and the average energy for prior received blocks with CRC failures. For power control, an SIR target is increased by an UP step whenever an erased block is detected for the transport channel.
Abstract:
A method and apparatus are provided for adapting a pilot filter based on the velocity of a wireless communication device (WCD) in relation to a wireless network infrastructure. The pilot filter is adapted by determining pilot coefficients for the pilot filter based on the WCD velocity. The pilot filter may be located in the WCD, or in the network infrastructure, or in both.