Abstract:
Disclosed is a method for controlling an uplink (UL) power in a multi-subframe scheduling system including a user equipment (UE) receiving a multi-subframe UL scheduling instruction or physical downlink control channel (PDCCH) data of a downlink control information (DCI) format 3/3 A of the UE, in a DL subframe where the multi-subframe UL scheduling instruction is transmitted, and the UE determining a transmitting power of the PUSCH of each UL subframe scheduled by the multi-subframe UL scheduling instruction, based on a power controlling command value, and transmitting corresponding PUSCH data based on the calculated transmitting power.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a power adjusting method and corresponding to control node and UE. According to the present disclosure, interference to adjacent devices of the same or different wireless access techniques may be avoided, uplink scheduling efficiency of the UE may be increased, and therefore the efficiency of the whole network is increased.
Abstract:
An apparatus and a method for transmitting/receiving a Physical Uplink Shared CHannel (PUSCH) signal in a cellular radio communication system supporting a Carrier Aggregation (CA) scheme are provided. In the PUSCH transmission method, a User Equipment (UE) transmits a PUSCH signal to a Base Station (BS) based on an UpLink (UL)/DownLink (DL) Configuration, wherein, for a Time Division Duplexing (TDD) scheme, if the UE is configured with more than one serving cell, UL/DL Configurations of at least two serving cells are different, and a serving cell is one of a primary cell and a secondary cell, a UL/DL Configuration for the serving cell is set as a UL-reference UL/DL Configuration based on a pair formed by a UL/DL Configuration for another serving cell and the UL/DL Configuration for the serving cell.