Abstract:
An apparatus including a waveguide input coupler, a tapered branch waveguide, and a waveguide adaptor physically connected to the waveguide input coupler proximal end and to the branch waveguide proximal end. The waveguide input coupler includes a distal end having a distal end width and a proximal end having a proximal end width. The tapered branch waveguide includes a distal end having a distal end width and a proximal end having a proximal end width, the branch waveguide distal end width being greater than the branch waveguide proximal end width. The waveguide input coupler, the branch waveguide, and the waveguide adapter are configured to convert input light having a base transverse waveguide mode to output light having a higher-order waveguide mode.
Abstract:
An apparatus includes a plasmonic transducer with first and second oppositely disposed outer edges. A waveguide is configured to receive light from a light source, the waveguide have first and second portions that deliver first and second portions of the light to the first and second edges of the plasmonic transducer. The first and second portions are different by at least one of a geometry and a construction to cause a relative phase shift between the first and second portions of the light.
Abstract:
A device having an air bearing surface (ABS), the device including a near field transducer (NFT), the NFT having at least a portion thereof at the ABS; a first wrap layer, the first wrap layer surrounding at least a portion of the NFT, the first wrap layer having a thickness of not greater than about 30 nanometers (nm), and the first wrap layer being made of a material that has a refractive index (n) that is not greater than 2.0; a second wrap layer, the second wrap layer surrounding at least a portion of the first wrap layer, the second wrap layer having a thickness that is not greater than 100 nm, and the second wrap layer being made of a material that has a refractive index (n) that is at least about 1.9; and a top cladding layer surrounding at least a portion of the second wrap layer, the top cladding layer being made of a material that has a refractive index (n) that is not greater than 2.0.
Abstract:
A polarization rotator comprises a first waveguide configured to be coupled to an input coupler at a first end and a second waveguide, wherein the first waveguide is offset from the second waveguide and a second end of the first waveguide is coupled to a second end of the second waveguide.
Abstract:
A plasmonic transducer includes at least two metal elements with a gap therebetween. The metal elements are elongated along a plasmon-enhanced, near-field radiation delivery axis. Cross sections of the metal elements in a plane normal to the delivery axis vary in shape along the delivery axis. A waveguide is disposed along an elongated side of the plasmonic transducer. The waveguide is optically coupled to the plasmonic transducer along the elongated side.
Abstract:
A waveguide is configured to couple light from a light source at a fundamental transverse electric (TE) mode. A mode converter outputs the light to an output region of the waveguide at a higher-order TE mode. A plasmonic transducer receives the light at the higher order TE mode and generates surface plasmons that heat a recording medium. The plasmonic transducer includes: an input end proximate the output region of the waveguide and comprising a first convex curved edge; an output end proximate a surface that faces the recording medium, the output end comprising a second convex curved edge and a peg; and linear edges between the first and second convex curved edges.
Abstract:
The embodiments disclose a plasmonic cladding structure including at least one conformal plasmonic cladding structure wrapped around plural stack features of a recording device, wherein the conformal plasmonic cladding structure is configured to create a near-field transducer in close proximity to a recording head of the recording device, at least one conformal plasmonic cladding structure with substantially removed top surfaces of the stack features with exposed magnetic layer materials and a thermally insulating filler configured to be located between the stack features.
Abstract:
The embodiments disclose at least one predetermined patterned layer configured to eliminate a physical path of lateral thermal bloom in a recording device, at least one gradient layer coupled to the patterned layer and configured to use materials with predetermined thermal conductivity for controlling a rate of dissipation and a path coupled to the gradient layer and configured to create a path of least thermal conduction resistance for directing dissipation along the path, wherein the path substantially regulates and prevents lateral thermal bloom.
Abstract:
An apparatus includes a waveguide core having an elongated edge parallel to a substrate plane of the apparatus. An output end of the waveguide core faces a media-facing surface of the apparatus. A plate-like portion of a plasmonic material has a major surface facing the elongated edge of the waveguide core, and the major surface has a narrowed output end facing the media-facing surface. An elongated ridge of the plasmonic material is disposed on at least part of the plate-like portion between an input end and the narrowed output end.
Abstract:
An apparatus includes a submount having a mounting surface and a top surface opposite the mounting surface. A slider has a bonding feature that interfaces with the mounting surface of the submount, and two or more layers are disposed between the mounting surface of the submount and the bonding feature. The two or more layers are configured to enhance light absorption of light in proximity to the bonding feature. The light originates from a source of electromagnetic energy that illuminates the top surface of the submount.