Abstract:
A multi-frequency receiver for receiving plural frequencies of electromagnetic radiation (e.g., light) using a beam of charged particles shared between plural resonant structures. The direction of the beam of charged particles is selectively controlled by at least one deflector. The beam of charged particles passing near the resonant structure is altered on at least one characteristic as a result the presence of the electric field induced on the corresponding resonant structure. Alterations in the beam of charged particles are thus correlated to data values encoded by the electromagnetic radiation.
Abstract:
An optical transmitter produces electromagnetic radiation (e.g., light) of at least one frequency (e.g., at a particular color frequency) by utilizing a resonant structure that is excited by the presence a beam of charged particles (e.g., a beam of electrons) where the electromagnetic radiation is transmitted along a communications medium (e.g., a fiber optic cable). In at least one embodiment, the frequency of the electromagnetic radiation is higher than that of the microwave spectrum.
Abstract:
An electronic receiver array for decoding data encoded into electromagnetic radiation (e.g., light) is described. The light is received at an ultra-small resonant structure. The resonant structure generates an electric field in response to the incident light and light received from a local oscillator. An electron beam passing near the resonant structure is altered on at least one characteristic as a result of the electric field. Data is encoded into the light by a characteristic that is seen in the electric field during resonance and therefore in the electron beam as it passes the electric field. Alterations in the electron beam are thus correlated to data values encoded into the light.
Abstract:
An array of ultra-small structures of between ones of nanometers to hundreds of micrometers in size that can be energized to produce at least two different frequencies of out put energy or data, with the ultra small structures being formed on a single conductive layer on a substrate. The array can include one row of different ultra small structures, multiple rows of ultra small structures, with each row containing identical structures, or multiple rows of a variety of structures that can produce all spectrums of energy or combinations thereof, including visible light.
Abstract:
A system includes a plurality of chips, at least one of said chips having transmission circuitry constructed and adapted to emit a signal in the form of electro-magnetic radiation (EMR), said transmission circuitry including one or more nano-resonant structures that emit said EMR when exposed to a beam of charged particles, and at least some of said chips having receiver circuitry constructed and adapted to receive an EMR signal. A connector is constructed and adapted to receive emitted EMR from said at least one of said chips having transmission circuitry and further constructed and adapted to provide data in said EMR emitted by said at least one of said chips to receiver circuitry of at least some others of said plurality of chips.
Abstract:
A filter for use with an array of ultra-small resonant structures that are producing encoded EMR wherein the filter is designed to either reflect encoded EMR beams or to permit certain frequencies to pass there through so that the encoded EMR beam and its encoded data can be transmitted out of the device and to another receiver where the data can be used.
Abstract:
A focal plane array electromagnetic radiation detector includes an array of micro-electromagnetic resonant detector cells. Each micro-electromagnetic resonant detector cell may include an ultra-small resonant structure for receiving an electromagnetic wave and adapted to angularly modulate a charged particle beam in response to receiving an electromagnetic wave. Each micro-electromagnetic detector cell may include a detector portion that measures the angular modulation of the charged particle beam. The ultra-small resonant structure is designed to angularly modulate the charged particle beam according to a characteristic of the received electromagnetic wave.
Abstract:
A device for coupling energy in a plasmon wave to an electron beam includes a metal transmission line having a pointed end; a generator mechanism constructed and adapted to generate a beam of charged particles; and a detector microcircuit disposed adjacent to the generator mechanism. The generator mechanism and the detector microcircuit are disposed adjacent the pointed end of the metal transmission line and wherein a beam of charged particles from the generator mechanism to the detector microcircuit electrically couples the plasmon wave traveling along the metal transmission line to the microcircuit.
Abstract:
A sensor device includes a substrate having first and second regions of first and second conductivity types, respectively. A junction having a band-gap is formed between the first and second regions. A plasmon source generates plasmons having fields. At least a portion of the plasmon source is formed near the junction, and the fields reduce the band-gap to enable a current to flow through the device.
Abstract:
A charged particle beam including charged particles (e.g., electrons) is generated from a charged particle source (e.g., a cathode or scanning electron beam). As the beam is projected, it passes between plural alternating electric fields. In one embodiment, the electric fields alternate not only on the same side but across from each other as well. The attraction of the charged particles to their oppositely charged fields accelerates the charged particles, thereby increasing their velocities in the corresponding (positive or negative) direction. The velocity oscillation direction can be either perpendicular to the direction of motion of the beam or parallel to the direction of motion of the beam.