Abstract:
A gas turbine engine component includes a structure having an exterior surface. A cooling hole extends from a cooling passage to the exterior surface to provide an exit area on the exterior surface that is substantially circular in shape. A gas turbine engine includes a compressor section and a turbine section. A combustor is provided between the compressor and turbine sections. A component in at least one of the compressor and turbine sections has an exterior surface. A film cooling hole extends from a cooling passage to the exterior surface to provide an exit area that is substantially circular in shape. A method of machining a film cooling hole includes providing a component having an internal cooling passage and an exterior surface, machining a film cooling hole from the exterior surface to the internal cooling passage to provide a substantially circular exit area on the exterior surface.
Abstract:
One embodiment includes a method to regenerate a component. The method includes additively manufacturing the component with at least a portion of the component in a near finished shape. The component is encased in a shell mold, the shell mold is cured, the encased component is placed in a furnace and the component is melted, the component is solidified in the shell mold, and the shell mold is removed from the solidified component.
Abstract:
An engine component for isolating a first pressure and/or first flow and a second pressure and/or second flow is provided. The engine component may comprise a body portion, a first seal element and a second seal element. The body portion may include a first standoff and a second standoff. The first seal element housed within the body portion. The second seal element may also be housed within the body portion. The second seal element may be coupled to the first seal element.
Abstract:
A turbomachine airfoil element comprises an airfoil having: an inboard end; an outboard end; a leading edge; a trailing edge; a pressure side; and a suction side. A span between the inboard end and the outboard end is 1.35-1.65 inches. A chord length at 50% span is 1.20-1.60 inches. At least two of: a first mode resonance frequency is 2858±10% Hz; a second mode resonance frequency is 4916±10% Hz; a third mode resonance frequency is 7160±10% Hz; a fourth mode resonance frequency is 10268±10% Hz; a fifth mode resonance frequency is 14235±10% Hz; and a sixth mode resonance frequency is 15088±10% Hz.
Abstract:
In one exemplary embodiment, an airfoil includes pressure and suction side walls that extend in a chord-wise direction between leading and trailing edges. The pressure and suction side walls also extend in a radial direction to provide an exterior airfoil surface. A cooling passage is arranged between the pressure and suction walls. The cooling passage has a first width in the chord-wise direction near the suction side wall. A second width is in the chord-wise direction near the pressure side wall. A third width is between the pressure and suction side walls. The third width is smaller than the first and second widths.
Abstract:
A gas turbine engine airfoil includes a platform, and spaced apart walls that provide an exterior airfoil surface that extends radially from the platform to an end opposite the platform. A serpentine cooling passage is arranged between the walls and has a first passageway that extends from the platform toward the end and a second passageway fluidly connecting to the first passageway and extending from the end toward the platform to an end. A platform cooling passageway is fluidly connected to the end and extends transversely into the platform. A cooling hole fluidly connects the platform cooling passageway to an exterior surface.
Abstract:
An airfoil includes an airfoil wall that defines a leading end, a trailing end, a first side, and a second side. Radially-extending ribs partition the interior cavity of the airfoil into first and second cooling channels and a radial cooling passage that is situated between the first and second cooling channels. The cooling channels extend to respective first and second channel ends. A turn channel connects the first and second channel ends. The turn channel splits at the first channel end into first and second channel legs such that there is a region between the first and second channel legs. The channels legs merge at the second channel end. The radial cooling passage extends through the region between the first and second channel legs.
Abstract:
An airfoil includes an airfoil wall that defines a leading end, a trailing end, and first and second sides joining the leading end and the trailing end. First and second ribs each connect the first and second sides of the airfoil wall. Each of the first and second ribs define a tube portion that circumscribes a rib passage and includes cooling apertures, and first and second connector arms that solely join the tube portion to, respectively, the first and second sides of the airfoil wall. The airfoil wall and the first and second ribs bound a cooling channel there between. The cooling apertures of the first and second ribs open at the cooling channel such that there is a cooling circuit in which the rib passages of the first and second ribs are fluidly connected through the cooling apertures and the cooling channel
Abstract:
In one exemplary embodiment, an airfoil includes pressure and suction side walls that extend in a chord-wise direction between leading and trailing edges. The pressure and suction side walls also extend in a radial direction to provide an exterior airfoil surface. A cooling passage is arranged between the pressure and suction walls. The cooling passage has a first width in the chord-wise direction near the suction side wall. A second width is in the chord-wise direction near the pressure side wall. A third width is between the pressure and suction side walls. The third width is smaller than the first and second widths.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a wall having an internal surface and an outer skin, a cooling hole having an inlet extending from the internal surface and merging into a metering section, and a diffusion section downstream of the metering section that extends to an outlet located at the outer skin. The diffusion section of the cooling hole includes a first side diffusion angle, a second side diffusion angle and a downstream diffusion angle at a downstream surface of the diffusion section, the downstream diffusion angle being less than the first side diffusion angle and the second side diffusion angle.