Abstract:
An exemplary liquid crystal display (LCD) (20) includes a plurality of scanning lines (21) that are parallel to each other and that each extend along a first direction, and a plurality of data lines (2) that are parallel to each other and that each extend along a second direction different from the first direction. Each scanning line includes a first sub-line (211), a second sub-line (212), and a plurality of connecting portions (213) electrically connecting between the first and second sub-lines. The scanning lines of the LCD each include the first and second sub-lines connected in parallel. Thus the scanning lines have a low resistance. When scanning voltages flow through the scanning lines, any voltage drop is relatively small, and all TFTs (23) of the LCD connected with a same scanning line can be driven by substantially the same voltage. Therefore, the LCD has improved display performance.
Abstract:
In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.
Abstract:
In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected.In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.
Abstract:
An exemplary liquid crystal display (LCD) (20) includes a plurality of scanning lines (21) that are parallel to each other and that each extend along a first direction, and a plurality of data lines (2) that are parallel to each other and that each extend along a second direction different from the first direction. Each scanning line includes a first sub-line (211), a second sub-line (212), and a plurality of connecting portions (213) electrically connecting between the first and second sub-lines. The scanning lines of the LCD each include the first and second sub-lines connected in parallel. Thus the scanning lines have a low resistance. When scanning voltages flow through the scanning lines, any voltage drop is relatively small, and all TFTs (23) of the LCD connected with a same scanning line can be driven by substantially the same voltage. Therefore, the LCD has improved display performance.
Abstract:
An optical modulation system for externally modulating two independent optical signals with first, second, third and fourth electrical input signals with two modulators. The system includes a first modulator with a first electrode receiving the first electrical input signal, a second electrode receiving the second electrical input signal, a first optical signal path co-propagating the first optical input signal with the first electrical signal and counter-propagating the second optical input signal to generate a first modulated optical signal, and a second optical signal path co-propagating the second optical input signal with the second electrical input signal and counter-propagating the first optical input signal to generate a second modulated optical signal. The second modulator includes a third electrode receiving the third electrical input signal, a fourth electrode receiving the fourth electrical input signal, a third optical signal path co-propagating the first optical input signal with the third electrical input signal and counter-propagating the second optical input signal to generate a third modulated optical signal, and a fourth optical signal path co-propagating the second optical input signal with the fourth electrical input signal and counter-propagating the first optical input signal to generate a fourth modulated optical signal.
Abstract:
An optical system may be formed by including a plurality of discrete protrusions comprising electro-optic material. Each discrete protrusion is electrically and optically isolated from each other. The protrusions further have defined a top face, a bottom face, a first side face or first and second side faces, and front and back faces. A plurality of electrodes are associated with each of the protrusions. The electrodes are capable of inducing an electric field in the electro-optic material for independently modulating one or more light beams which are incident upon one of the faces of the protrusions. In one preferred embodiment, the protrusions are oriented with respect to the one or more light beams such that each of the light beams enters the protrusion and strikes a boundary between first and second portions of the protrusion at an angle and is reflected by total internal reflection when the first portion is electro-optically activated by application of sufficient voltage, but which will pass substantially unreflected through the boundary when the first portion is not electro-optically activated.
Abstract:
An arrangement (10) for efficiently generating tunable pulsed laser output at 8-12 microns. The arrangement (10) includes a laser (12), a first optical parametric oscillator (14) of unique design, and a second optical parametric oscillator (22). The first oscillator (14) is constructed with an energy shifting crystal (20) and first and second reflective elements (16) and (18) disposed on either side thereof. Energy from the laser (12) at a first wavelength is shifted by the crystal and output at a second wavelength. The second wavelength results from a secondary process induced by a primary emission of energy at a third wavelength, the third wavelength resulting from a primary process generated from the first wavelength in the crystal. Mirror coatings are applied on the reflective elements (16 and/or 18) for containing the primary emission and enhancing the secondary process. The second optical parametric oscillator (22) then shifts the energy output by the first OPO (14) at the second wavelength to the desired fourth wavelength. In the illustrative embodiment, the first optical parametric oscillator (14) includes an x-cut rubidium titanyl arsenate crystal (20) and the second optical parametric oscillator (22) includes a silver gallium selenide crystal. The first wavelength is approximately 1.06 microns, the second wavelength is approximately 3.01 microns, the third wavelength is approximately 1.61 microns, and the fourth wavelength is in the range of 8-12 microns.
Abstract:
An optical modulation system for externally modulating two independent optical signals with first, second, third and fourth electrical input signals with two modulators. The system includes a first modulator with a first electrode receiving the first electrical input signal, a second electrode receiving the second electrical input signal, a first optical signal path co-propagating the first optical input signal with the first electrical signal and counter-propagating the second optical input signal to generate a first modulated optical signal, and a second optical signal path co-propagating the second optical input signal with the second electrical input signal and counter-propagating the first optical input signal to generate a second modulated optical signal. The second modulator includes a third electrode receiving the third electrical input signal, a fourth electrode receiving the fourth electrical input signal, a third optical signal path co-propagating the first optical input signal with the third electrical input signal and counter-propagating the second optical input signal to generate a third modulated optical signal, and a fourth optical signal path co-propagating the second optical input signal with the fourth electrical input signal and counter-propagating the first optical input signal to generate a fourth modulated optical signal.
Abstract:
A method of linearizing a modulator (1) having two parallel-coupled sub-modulators (2, 3). The complete transmission function of the modulator includes parameters which relate to power division (A, 1-A) of a non-modulated carrier wave (P.sub.in) and a relationship (B) between the activation degree of the sub-modulators (2, 3). The transmission function is simplified and series-expanded with two higher-order terms, each having a respective coefficient. An expression for intermodulation distortion is calculated with the aid of the series-expansion and with control signals (V1, V2) having two or three frequencies. The signs of the coefficients are determined so that the terms having these coefficients will mutually counteract their respective distortion contributions, and limited search regions for the parameters (A, B) are calculated with the aid of the sign-determined coefficients. In accordance with secondary conditions for high electrooptic efficiency and pronounced modulation depth, the distortion level of the modulator is calculated with the aid of the complete transmission function in the search regions.