Abstract:
After receiving a message that defines an initial target area for distribution of an alert, a wireless carrier network may identify a first set of one or more coverage areas that are fully encompassed within the initial target area and a second set of one or more coverage areas that are partially encompassed within the initial target area. For each partially-encompassed coverage area, the network may then define a respective target area that is less geometrically complex than the initial target area. In turn, the network may broadcast the alert (1) in each fully-encompassed coverage area in a manner that directs a recipient device to output the alert regardless of the device's location and (2) in each partially-encompassed coverage area in a manner that directs a recipient device to output the alert only if the device's location is encompassed within the respective target area for the coverage area.
Abstract:
A method and corresponding system is provided to help mitigate the potential quality-of-service degradation associated with fast-moving UEs operating in a network that provides higher-bandwidth frequency channels in some but not all wireless coverage sectors. In accordance with the method, a base station may evaluate a UE's current speed and, when that speed exceeds a threshold speed, the base station may instruct the UE to register on a low-bandwidth channel rather than a higher-bandwidth channel. Registering for service on a low-bandwidth channel instead of a higher-bandwidth channel may help ensure that the UE maintains a consistent quality of service as the UE moves from coverage area to coverage area. Further, the base station may also query nearby base stations to determine whether there exists a sufficient number of base stations that operate on higher-bandwidth channels. If so, the base station may instruct the UE to use a higher-bandwidth channel.
Abstract:
A mobility management entity (MME) may receive a request that identifies an access point name (APN) for a packet data connection for a wireless communication device (WCD). The APN may be authorized by the WCD according to a service profile in a home subscriber server (HSS), and the APN may be associated with a subscribed packet data policy. However, if the MME determines that it cannot validate the request (e.g., because the HSS is unreachable or non-responsive), the MME may send to a packet gateway a session request that identifies the WCD and includes a dummy APN. The dummy APN is associated with a substitute packet data policy that differs from the subscribed packet data policy. Based on the session request including the dummy APN, the packet gateway may establish a packet data session for the WCD in accordance with the substitute packet data policy.
Abstract:
Disclosed herein are systems and methods for dynamically controlling active-to-dormant timers in radio access networks (RANs). One embodiment takes the form of a method that involves a system detecting a triggering event, and responsively identifying a current access-channel occupancy (ACHO). The method further involves the system increasing an active-to-dormant timer for at least one access terminal when the identified current ACHO exceeds a first threshold, and decreasing an active-to-dormant timer for at least one access terminal when the identified current ACHO is less than a second threshold.
Abstract:
A method to dynamically configure a base station based on evaluation of whether nearby and/or neighboring base stations operate on a preferred coverage frequency. For instance, the base station could be configured to broadcast as a start-scanning threshold value a relatively high value in response to determining that a base station operating on the preferred coverage frequency is located within a predefined threshold distance. Further, the base station could be configured to broadcast as the start-scanning threshold value an intermediate value in response to determining that no nearby base station operates on the preferred coverage frequency but at least one base station that is a handover neighbor operates on the preferred coverage frequency. And the base station could be configured to broadcast as the start-scanning threshold value a relatively low value in response to determining that no nearby base stations or handover neighbors operate on the preferred coverage frequency.
Abstract:
Illustrative methods and systems may help to more efficiently use network resources in fall back scenarios. An illustrative method involves a network component: (a) receiving a first paging request directed to a target user-entity (UE) for a first communication of a first communication type, (b) initiating a first paging process to page the target UE for the first communication, (c) before the first paging process is complete, receiving a second paging request directed to the target UE, wherein the second paging request for a second communication of a second communication type, wherein the second communication type that has a higher priority than the first communication type, and (d) in response: (i) refraining from assigning network resources for the first communication, and (ii) using a result of the first paging process to determine whether or not to assign network resources for the second communication.
Abstract:
Embodiments described herein may help to provide a delayed zone-update process. An exemplary method may involve a user entity, which is initially operating in a first of a plurality of multi-coverage-area zones in a radio access network (RAN), subsequently determining that the user entity has moved into a second multi-coverage-area zone of the RAN, wherein the user entity is located in a first coverage area of the second multi-coverage-area zone. In response, the user entity may refrain from sending a registration message to register in the second multi-coverage-area zone until the earlier of: (i) a threshold period of time elapsing and (ii) the user entity moving into another coverage area in the second multi-coverage-area zone that is different from the first coverage area.
Abstract:
Disclosed is a method and apparatus and system for managing frequency use in a system where multiple air interface protocols are in use. When a wireless communication device (WCD) is operating under a particular air interface protocol on a particular frequency channel, the WCD detects a threshold signal under another air interface protocol, and the WCD responsively transitions from operating under the particular air interface protocol on the particular frequency channel to operating under the particular air interface protocol on a different frequency channel. The method may thereby help to reduce likelihood of interference.
Abstract:
Systems and methods are provided for an optimized mobile-IPv6 encapsulation. A mobile node sends packets to a correspondent node by encapsulating a packet using an IPv6 routing extension header, and reverse tunneling the packet to a home agent. The home agent modifies the packet and forwards it to the correspondent node. When the correspondent node sends packets to the mobile node's home address, the home agent intercepts the packet, encapsulates the packet with an IPv6 routing extension header, and tunnels the packet to the mobile node. Consequently, because packets are tunneled using IPv6 routing extension headers, the amount of overhead in each encapsulated packet is reduced, thus increasing the available bandwidth in a network.
Abstract:
A radio access network (RAN) may receive a call setup request from a wireless communication device (WCD). The call setup request may indicate that the WCD supports a first media codec. The RAN may obtain a set of candidate wireless coverage areas for serving the WCD. A first subset of the candidate wireless coverage areas may support the first media codec, and a second subset of the candidate wireless coverage areas might not support the first media codec. The RAN may assign traffic channels to the WCD, such that the assigned traffic channels include traffic channels from at least two of the first subset of the candidate wireless coverage areas, but do not include traffic channels from any of the second subset of the candidate wireless coverage areas. The RAN may communicate with the WCD substantially simultaneously via the assigned traffic channels using the first media codec.