Abstract:
Disclosed are various embodiments for a computing device with an integrated authentication token. The computing device includes first circuitry having a processor and a memory and providing general-purpose computing capability. The computing device also includes second circuitry configured to generate a one-time password. The first circuitry is incapable of determining the one-time password due to a hardware, communicative, and/or electrical separation, and the first and second circuitry are in a single enclosure.
Abstract:
Disclosed are various embodiments for centrally managed use case-specific entity identifiers. An identifier translation service receives an identifier translation request from a requesting service. The request specifies a first use case-specific entity identifier, which is specific to a first use case. An actual entity identifier is obtained by decrypting the first use case-specific entity identifier. A second use case-specific entity identifier is generated based at least in part on encrypting the actual entity identifier. The second use case-specific entity identifier is sent to the requesting service in response to the identifier translation request.
Abstract:
Aspects related to the secure transfer and use of secret material are described. In one embodiment, public vendor and provider keys are provided to a customer and encrypted secret material is received in return. The encrypted secret material may include a customer secret material encrypted by the public vendor and provider keys. The encrypted secret material is imported into a trusted execution environment and decrypted with private provider and vendor keys. In this manner, a provider of cryptographic processes is not exposed to the secret material of the customer, as the customer secret material is decrypted and stored within the trusted execution environment but is not accessed by the provider in an unencrypted form. In turn, the provider may receive various instructions to perform cryptographic operations on behalf of the customer, and those instructions may be performed by the trusted execution environment.
Abstract:
A technology is described for making a decision based on identifying without disclosing the identifying information. The method may include receiving a mapping value that represents identifying information that has been converted into a mapping value. A request for data associated with the identifying information may be made by providing the mapping value as a proxy for the identifying information whereby the data associated with the identifying information may be located using the mapping value and returned to a requesting client or service.
Abstract:
When a customer places an order for a first item and a second item, delivery systems utilize an aerial vehicle to transport the first item from a first source of the first item to a second source of the second item. At the second source, the first item and the second item are transferred into a carrier vehicle and transported toward a destination of the order. Once the carrier vehicle arrives within a vicinity of the destination, an autonomous ground vehicle departs the carrier vehicle with the first item and the second item, and delivers the first item and the second item to the destination. The delivery systems effectively expand the capacity of sources of items, and simplify processes for delivering orders for items, by enabling items from multiple sources to be combined at a single source prior to delivery, and transported to a destination from the single source.
Abstract:
Disclosed are various embodiments for implementing passenger profiles for autonomous vehicles. A passenger of the autonomous vehicle is identified. A passenger profile corresponding to the passenger and comprising a passenger preference is identified. The passenger preference is identified. A configuration setting of the autonomous vehicle corresponding to autonomous operation of the autonomous vehicle is then adjusted based at least in part on the passenger preference.
Abstract:
A machine learning system builds and uses control policies for controlling robotic performance of a task. Such control policies may be trained using targeted updates. For example, two trials identified as similar may be compared and evaluated to determine which trial achieved a greater degree of task success; a control policy update may then be generated based on identified differences between the two trials.
Abstract:
Disclosed are various embodiments for implementing passenger profiles for autonomous vehicles. A passenger of the autonomous vehicle is identified. A passenger profile corresponding to the passenger and comprising a passenger preference is identified. The passenger preference is identified. A configuration setting of the autonomous vehicle corresponding to autonomous operation of the autonomous vehicle is then adjusted based at least in part on the passenger preference.
Abstract:
The present disclosure is directed to a network of autonomous vehicles, such as autonomous ground vehicles (“AGVs”) that deliver items to and/or from a destination location and/or perform a service. For example, a community (e.g., neighborhood, apartment complex) may include a plurality of autonomous vehicles that deliver payloads to different locations (e.g., homes, apartments) within the community for use or consumption. Some of the payloads are community items (e.g., microwave, stove top, cooking utensils) that are shared by members of the community and transferred between locations within the community by autonomous vehicles.
Abstract:
A client establishes a network session with a server. The network session is used to establish an encrypted communications session. The client establishes another network session with another server, such as after terminating the first network session. The client resumes the encrypted communications session over the network session with the other server. The other server is configured to receive encrypted communications from the client and forward them to the appropriate server.