Abstract:
The invention relates to a process to prepare tetrahalopropenes, such as 2-chloro-3,3,3-trifluoropropene (1233xf). The process comprises atomizing a feed material, such as 1,1,2,3-tetrachloropropene (1230xa) and the like, and mixing it with superheated HF to form a vaporized composition of feed material and HF with substantially instantaneous contact with a vapor phase fluorination catalyst. The invention extends catalyst life and forestalls catalyst deactivation.
Abstract:
Disclosed is a method for the production of 1233xf comprising the continuous low temperature liquid phase reaction of 1,1,1,2,3-pentachloropropane and anhydrous HF, without the use of a catalyst, wherein the reaction takes place in one or more reaction vessels, each one in succession converting a portion of the original reactants fed to the lead reaction vessel and wherein the reactions are run in a continuous fashion.
Abstract:
The present disclosure provides a method of removing iodine (I2) and iodine-containing species from processes for producing trifluoroiodomethane (CF3I). The present disclosure further provides another method of removing iodine and iodine-containing species from trifluoroacetyl iodide (TFAI).
Abstract:
A method for conversion of a composition containing HCFO-1233zd(Z) and HCFC-244fa to form HCFO-1233zd(E) by reacting a mixture including HCFO-1233zd(Z) and HCFC-244fa in a vapor phase in the presence of a catalyst to simultaneously isomerize HCFC-1233zd(Z) to form HCFO-1233zd(E) and dehydrohalogenate HCFC-244fa to form HCFO-1233zd(E). The catalyst may be a chromium-based catalyst such as chromium trifluoride, chromium oxyfluoride, or chromium oxide, for example.
Abstract:
The present disclosure provides a process for producing trifluoroiodomethane (CF3I), with a low concentration of methyl propane. Specifically, the present disclosure provides a process for producing trifluoroiodomethane (CF3I) with an amount of methyl propane of 100 ppm or less.
Abstract:
Heterogenous azeotrope or azeotrope-like compositions comprising 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and water which may include from about 0.05 wt. % to about 92.01 wt. % 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and from about 7.99 wt. % to about 99.95 wt. % water and having a boiling point between about—13.5° C. and about 14.5° C. at a pressure of between about 12.5 psia and about 16.5 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities from 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb).
Abstract:
A method for conversion of a composition containing HCFO-1233zd(Z) and HCFC-244fa to form HCFO-1233zd(E) by reacting a mixture including HCFO-1233zd(Z) and HCFC-244fa in a vapor phase in the presence of a catalyst to simultaneously isomerize HCFC-1233zd(Z) to form HCFO-1233zd(E) and dehydrohalogenate HCFC-244fa to form HCFO-1233zd(E). The catalyst may be a chromium-based catalyst such as chromium trifluoride, chromium oxyfluoride, or chromium oxide, for example.
Abstract:
Heterogenous azeotrope or azeotrope-like compositions comprising 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and water which may include from about 0.09 wt. % to about 92.69 wt. % 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and from about 7.31 wt. % to about 99.91 wt. % water and having a boiling point between about 12.0° C. and about 13.6° C. at a pressure of between about 12.5 psia and about 16.5 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities, including water, from 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf).
Abstract:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and hexafluoroacetone (HFA), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining hexafluoroacetone (HFA) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising hexafluoroacetone (HFA) and trifluoroiodomethane (CF3I) having a boiling point of about −29.84° C.±0.30° C. at a pressure of about 14.40 psia±0.30 psia.
Abstract:
The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and hexafluoropropene (HFP), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining hexafluoropropene (HFP) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising hexafluoropropene (HFP) and trifluoroiodomethane (CF3I) having a boiling point of about −31.21° C.±0.30° C. at a pressure of about 14.21 psia±0.30 psia.