摘要:
The invention relates to a production method for an oxide capable of efficiently producing an oxide of an organic compound in the presence of raw materials for a Pt/Bi composite catalyst, and to a production method for a Pt/Bi composite catalyst capable of producing a catalyst that exhibits a high activity for dehydrogenation oxidation reaction of an organic compound even in the presence of an organic compound to be a raw material for an oxide. The oxide production method includes subjecting an organic compound having one primary hydroxy group to a dehydrogenative oxidation reaction in the presence of Pt supported by a carrier, a Bi ion source and water, under the condition such that the minimum value of the pH during the reaction is less than 7, thereby obtaining an oxide of the organic compound.
摘要:
Provided is a method for preparing glycolic acid which comprises oxidizing glycolaldehyde with molecular oxygen in the presence of a solvent and a supported catalyst. Said supported catalyst comprises (i) a noble metal selected from the group consisting of Pt, Pd, Ru and Rh, (ii) Bi and (iii) a support. Advantageously, the supported metallic catalyst is more active than the catalysts used in prior art. Furthermore, the catalyst is more stable at oxygen rich conditions.
摘要:
The present disclosure relates to a catalyst for directly decomposing urea, a method for preparing the same and a system for decomposing urea including the same, whereby the efficiency of decomposing urea to ammonia may be improved while preventing the formation of a byproduct such as biuret at temperatures of 200° C. or below by controlling the oxygen composition of the catalyst including titania and ceria.
摘要:
A method for preparing methyl methacrylate from methacrolein and methanol; said method comprising contacting in a reactor a mixture comprising methacrolein, methanol and oxygen with a catalyst bed of heterogeneous catalyst comprising a support and a noble metal, wherein mass transfer rate of oxygen in hour−1 divided by space-time yield in moles methyl methacrylate/kg·catalyst hour in the catalyst bed is at least 20.
摘要:
An oxidation catalyst is described for treating an exhaust gas produced by a diesel engine comprising a catalytic region and a substrate, wherein the catalytic region comprises a catalytic material comprising: bismuth (Bi), antimony (Sb) or an oxide thereof; a platinum group metal (PGM) selected from the group consisting of (i) platinum (Pt), (ii) palladium (Pd) and (iii) platinum (Pt) and palladium (Pd); and a support material, which is a refractory oxide; wherein the platinum group metal (PGM) is supported on the support material; and wherein the bismuth (Bi), antimony (Sb) or an oxide thereof is supported on the support material and/or the refractory oxide comprises the bismuth, antimony or an oxide thereof.
摘要:
An oxidation catalyst is described for treating an exhaust gas produced by a diesel engine comprising a catalytic region and a substrate, wherein the catalytic region comprises a catalytic material comprising: bismuth (Bi) or an oxide thereof; a platinum group metal (PGM) selected from the group consisting of (i) platinum (Pt), (ii) palladium (Pd) and (iii) platinum (Pt) and palladium (Pd); and a support material comprising a mixed oxide of titanium dioxide and silica; or a composite oxide of titanium dioxide and silica; or titanium dioxide doped with silica; wherein the platinum group metal (PGM) is supported on the support material; and wherein the bismuth (Bi) or an oxide thereof is supported on the support material.
摘要:
The invention concerns a process for preparing a catalyst comprising at least one metal M from the platinum group, tin, a phosphorus promoter, a halogenated compound, a porous support and at least one promoter X1 selected from the group constituted by gallium, indium, thallium, arsenic, antimony and bismuth. The promoter or promoters X1 and the phosphorus are introduced during one or more sub-steps a1) or a2), the sub-step a1) corresponding to synthesis of the precursor of the main oxide and sub-step a2) corresponding to shaping the support. The tin is introduced during at least one of sub-steps a1) and a2). The product is dried and calcined before depositing at least one metal M from the platinum group. The ensemble is then dried in a stream of neutral gas or a stream of gas containing oxygen, and then is dried. The invention also concerns the use of a catalyst obtained by said process in catalytic reforming or aromatics production reactions.
摘要:
A metal loaded catalyst comprises a support and main active metal components and optional auxiliary active metal components, wherein the main active metal components are elementary substances and obtained by ionizing radiation reducing precursors of main active metal components. The catalyst can be widely used in the catalytic reactions of petrochemistry industry with high activity and selectivity. The catalyst can be used directly without being reduced preliminarily by hydrogen.
摘要:
A method for producing polyoxyalkylene alkyl ether carboxylic acid or a salt thereof includes an oxidation reaction process of oxidizing polyoxyalkylene alkyl ether with oxygen by supplying an oxygen-containing gas to a suspension or a solution that has a depth of 200 mm or more and includes polyoxyalkylene alkyl ether. In the oxidation reaction process, a supply rate of the oxygen-containing gas is reduced in a period in which the conversion is greater than or equal to 50% and less than 70%.
摘要:
Provided is a catalyst having the ability to combust PM at relatively low temperatures and having high HC and CO removal (conversion) efficiency even at the above operating temperature. In the catalyst composition, at least one kind of platinum group element selected from Pt, Rh, and Pd is dispersed in and supported by a platinum group-supporting carrier containing at least one kind of element selected from Zr, Al, Y, Si, Bi, Pr, and Tb, and the platinum group-supporting carrier is supported on the surface of a Ce oxide containing Ce as an essential component. The catalyst composition has both PM combustion activity and gas purification activity.