Abstract:
A system for implementing an orthogonal frequency division multiplexing scheme and providing an improved range extension. The system includes a transmitter for transmitting data to a receiver. The transmitter includes a symbol mapper for generating a symbol for each of a plurality of subcarriers and a spreading module for spreading out the symbol on each of the plurality of subcarriers by using a direct sequence spread spectrum. The symbol on each of the plurality of subcarriers is spread by multiplying the symbol by predefined length sequences. The receiver includes a de-spreader module for de-spreading the symbols on each of the plurality of subcarriers. The de-spreader module includes a simple correlator receiver for obtaining maximum detection. The correlator produces an output sequence of a same length as an input sequence and the de-spreader module uses a point of maximum correlation on the output sequence to obtain a recovered symbol.
Abstract:
A method for generating a preamble of a frame for a wide-bandwidth channel wireless communication begins by generating a legacy carrier detect field. The method continues by generating a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field. The method continues by generating a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field.
Abstract:
A method for receiving a frame in a high data throughput wireless local area network begins by receiving a preamble of the frame via a channel in accordance with a default receiver filter mask. The processing continues by validating the preamble. The processing continues by, when the preamble is validated, interpreting the preamble to determine a high data throughput channel configuration. The processing continues by reconfiguring the default receiver filter mask in accordance with the high data throughput channel configuration to produce a reconfigured receiver filter mask. The processing continues by receiving a data segment of the frame in accordance with the reconfigured receiver filter mask.
Abstract:
The present invention provides a method and apparatus for initiating a multiple input multiple output (MIMO) communication. The method and apparatus includes processing that begins by transmitting a frame formatted in accordance with a default MIMO active transmitter-receiver antenna configuration to a target receiver. The processing continues by receiving at least one response frame from the target receiver. The processing continues by determining a number of receiver antennas of the target receiver from the at least one response frame.
Abstract:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
Abstract:
A method for wireless communication begins by determining whether legacy devices are within a proximal region of the wireless communication. The method continues, when at least one legacy device is within the proximal region, formatting a frame to include: a legacy preamble; a signal field; an extended preamble; at least one additional signal field; at least one service field; an inter frame gap; and a data field.
Abstract:
Header encoding for SC and/or OFDM signaling using shortening, puncturing, and/or repetition in accordance with encoding header information within a frame to be transmitted via a communication channel employs different respective puncturing patterns as applied to different portions thereof. For example, a first puncturing pattern is applied to a first portion of the frame, and a second puncturing pattern is applied to a second portion of the frame (the second portion may be a repeated version of the first portion). Shortening (e.g., by padding 0-valued bits thereto) may be made to header information bits before they undergo encoding (e.g., in an LDPC encoder). One or both of the information bits and parity/redundancy bits output from the encoder undergo selective puncturing. Moreover, one or both of the information bits and parity/redundancy bits output from the encoder may be repeated/spread before undergoing selective puncturing to generate a header.
Abstract:
A wireless transceiver includes an antenna array that transmits an outbound RF signal containing outbound data to remote transceivers and that receives an inbound RF signal containing inbound data from the remote RF transceivers, wherein the antenna array is configurable based on a control signal. An antenna configuration controller generates the control signal to configure the antenna array to hop among a plurality of radiation patterns based on a hopping sequence. An RF transceiver section generates the outbound RF signal based on the outbound data and that generates the inbound data based on the inbound RF signal. In one configuration, a switching section selectively couples a selected one of the antennas in the array to the RF transceiver section, based on the control signal. In another configuration, the RF transceiver section includes an RF section for each antenna in the array.
Abstract:
A wireless transceiver includes at least one phased array antenna, that transmits an outbound RF signal containing outbound data to a remote transceiver and that receives an inbound RF signal containing inbound data from the at least one remote RF transceiver, wherein the at least one phased array antenna is configurable based on a control signal. An antenna configuration controller generates the control signal to configure the phased array antenna to hop among a plurality of selected radiation patterns that are collaboratively selected by the wireless transceiver and the remote transceiver via a pairing procedure. At least one RF transceiver section generates the outbound RF signal based on the outbound data and that generates the inbound data based on the inbound RF signal.
Abstract:
A wireless multi-channel audio system including an audio source with a wireless transceiver configured to communicate according to a standard wireless protocol and an audio controller, which are collectively configured to establish wireless communications with multiple audio sinks via a corresponding wireless link, to assign each audio sink a corresponding audio channel, to synchronize timing with each audio sink, and to transmit audio information for each audio channel to a corresponding audio sink via a corresponding wireless link. The audio source may inquire as to supported audio parameters, such as sample rate and audio codec, and selects a commonly supported configuration. The audio source may separate audio information into queues for each audio channel for each audio sink. The audio source transmits frames with timestamps and a common start time for synchronization, and the audio sinks use this information to synchronize timing and remain virtually synchronized with each other.