Abstract:
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
Abstract:
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
Abstract:
Techniques for minimizing rate of depletion of a non-rechargeable power source, to extend the operational lifetime of an implantable medical device that includes the non-rechargeable power source, by enforcing operational-mode-specific communication protocols whereby inter-device communication between the implantable medical device and another implantable medical device is such that level of power draw from the non-rechargeable power source by the implantable medical device is less than level of power draw from the rechargeable power source by the another implantable medical device for the implantable medical devices to engage in communication with each other.
Abstract:
An intracardiac pacemaker system is configured to produce physiological atrial event signals by a sensing circuit of a ventricular intracardiac pacemaker and select a first atrial event input as the physiological atrial event signals. The ventricular intracardiac pacemaker detects atrial events from the selected first atrial event input, determines if input switching criteria are met, and switches from the first atrial event input to a second atrial event input in response to the input switching criteria being met. The second atrial event input includes broadcast atrial event signals produced by a second implantable medical device and received by the ventricular intracardiac pacemaker.
Abstract:
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
Abstract:
A medical device system including an pacemaker implantable in a chamber of a patient's heart is configured to sense near field events from a cardiac electrical signal, establish a lower rate interval to control a rate of delivery of pacing pulses and schedule a first pacing pulse by starting a pacing escape interval set equal to the lower rate interval. The pacemaker withholds the scheduled pacing pulse in response to sensing a near-field event during the pacing escape interval and schedules a next pacing pulse to be delivered at the lower rate interval from a time that the pacing escape interval is scheduled to expire.
Abstract:
A medical device system including a pacemaker implantable in an atrial chamber of a patient's heart is configured to sense near field atrial events from a cardiac signal received by a sensing module of the pacemaker and to sense far field ventricular events. The pacemaker is configured to establish an atrial lower rate interval to control a rate of delivery of atrial pacing pulses, determine a rate of the far field ventricular events sensed by the sensing module, determine an atrial event rate, compare the rate of the sensed far field ventricular events to the atrial event rate, and adjust the atrial lower rate interval in response to the comparison.
Abstract:
A medical device system including at least a first implantable medical device and a second implantable medical device is configured to establish by a control module of the first implantable medical device whether the second implantable medical device is present in a patient and self-configure an operating mode of the control module in response to establishing that the second implantable medical device is present.
Abstract:
A medical device system and method for determining pacing threshold data that includes a cardiac capture sensor, a phrenic nerve stimulation sensor, a pulse generator selectively coupled to a plurality of electrode vectors to deliver a pacing stimulation pulse, and a processor coupled to the cardiac capture sensor, the phrenic nerve stimulation sensor and the pulse generator and configured to deliver the pacing simulation pulse along the plurality of electrode vectors, determine, for each vector of the plurality of vectors, a pacing capture threshold in response to the delivered pacing pulse, deliver a phrenic nerve stimulation pulse along only the vectors of the plurality of vectors that the determined pacing capture threshold is less than a predetermined pacing capture threshold limit, and determine whether phrenic nerve stimulation is detected in response to the delivered phrenic nerve stimulation pulse.
Abstract:
Various techniques for facilitating selection of a pacing vector for pacing a chamber of a heart are described. One example method described includes, for each of a plurality of vectors, delivering a pacing pulse to capture a first heart chamber, determining a first time interval between the pacing pulse and a sensed event in a second heart chamber, determining a capture detection window in response to the determined first time interval, and enabling a capture detection module to iteratively decrease a pacing pulse magnitude delivered in the first heart chamber until an event in the second heart chamber is not sensed during the determined capture detection window.