摘要:
A method and system for isolating the heart in a 3D volume, such as a cardiac CT volume, for patients with coronary artery bypasses is disclosed. An initial heart isolation mask is extracted from a 3D volume, such as a cardiac CT volume. The aortic root and ascending aorta are segmented in the 3D volume, resulting in an aorta mesh. The aorta mesh is expanded to include bypass coronary arteries. An expanded heart isolation mask is generated by combining the initial heart isolation mask with an expanded aorta mask defined by the expanded aorta mesh.
摘要:
A method and system for polyp segmentation in computed tomography colonogrphy (CTC) volumes is disclosed. The polyp segmentation method utilizes a three-staged probabilistic binary classification approach for automatically segmenting polyp voxels from surrounding tissue in CTC volumes. Based on an input initial polyp position, a polyp tip is detected in a CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary.
摘要:
A method and system for detection of deformable structures in medical images is disclosed. Deformable structures can represent blood flow patterns in images such as Doppler echocardiograms. A probabilistic, hierarchical, and discriminant framework is used to detect such deformable structures. This framework integrates evidence from different primitive levels via a progressive detector hierarchy, including a series of discriminant classifiers. A target deformable structure is parameterized by a multi-dimensional parameter, and primitives or partial parameterizations of the parameter are determined. An input image is received, and a series of primitives are sequentially detected using the progressive detector hierarchy, in which each detector or classifier detects a corresponding primitive. The final detector detects configuration candidates for the deformable structure.
摘要:
A method and system for providing a user interface for polyp annotation, segmentation, and measurement in computer tomography colonography (CTC) volumes is disclosed. The interface receives an initial polyp position in a CTC volume, and automatically segments the polyp based on the initial polyp position. In order to segment the polyp, a polyp tip is detected in the CTC volume using a trained 3D point detector. A local polar coordinate system is then fit to the colon surface in the CTC volume with the origin at the detected polyp tip. Polyp interior voxels and polyp exterior voxels are detected along each axis of the local polar coordinate system using a trained 3D box. A boundary voxel is detected on each axis of the local polar coordinate system based on the detected polyp interior voxels and polyp exterior voxels by boosted 1D curve parsing using a trained classifier. This results in a segmented polyp boundary. The segmented polyp is displayed in the user interface, and a user can modify the segmented polyp boundary using the interface. The interface can measure the size of the segmented polyp in three dimensions. The user can also use the interface for polyp annotation in CTC volumes.
摘要:
A method and system for detecting 3D objects in images is disclosed. In particular, a method and system for Ileo-Cecal Valve detection in 3D computed tomography (CT) images using incremental parameter learning and ICV specific prior learning is disclosed. First, second, and third classifiers are sequentially trained to detect candidates for position, scale, and orientation parameters of a box that bounds an object in 3D image. In the training of each sequential classifier, new training samples are generated by scanning the object's configuration parameters in the current learning projected subspace (position, scale, orientation), based on detected candidates resulting from the previous training step. This allows simultaneous detection and registration of a 3D object with full 9 degrees of freedom. ICV specific prior learning can be used to detect candidate voxels for an orifice of the ICV and to detect initial ICV box candidates using a constrained orientation alignment at each candidate voxel.
摘要:
A system and method for providing decision support to a physician during a medical examination is disclosed. Data is received from a sensor representing a particular medical measurement. The received data includes image data. The received data and context data is analyzed with respect to one or more sets of training models. Probability values for the particular medical measurement and other measurements to be taken are derived based on the analysis and based on identified classes. The received image data is compared with training images. Distance values are determined between the received image data and the training images, and the training images are associated with the identified classes. Absolute value feature sensitivity scores are derived for the particular medical measurement and other measurements to be taken based on the analysis. The probability values, distance values and absolute value feature sensitivity scores are outputted to the user.
摘要:
A system and method for detecting an object in a high dimensional image space is disclosed. A three dimensional image of an object is received. A first classifier is trained in the marginal space of the object center location which generates a predetermined number of candidate object center locations. A second classifier is trained to identify potential object center locations and orientations from the predetermined number of candidate object center locations and maintaining a subset of the candidate object center locations. A third classifier is trained to identify potential locations, orientations and scale of the object center from the subset of the candidate object center locations. A single candidate object pose for the object is identified.
摘要:
A method for detecting fetal anatomic features in ultrasound images includes providing an ultrasound image of a fetus, specifying an anatomic feature to be detected in a region S determined by parameter vector θ, providing a sequence of probabilistic boosting tree classifiers, each with a pre-specified height and number of nodes. Each classifier computes a posterior probability P(y|S) where yε{−1,+1}, with P(y=+1|S) representing a probability that region S contains the feature, and P(y=−1|S) representing a probability that region S contains background information. The feature is detected by uniformly sampling a parameter space of parameter vector θ using a first classifier with a sampling interval vector used for training said first classifier, and having each subsequent classifier classify positive samples identified by a preceding classifier using a smaller sampling interval vector used for training said preceding classifier. Each classifier forms a union of its positive samples with those of the preceding classifier.
摘要:
A method and system for regression-based object detection in medical images is disclosed. A regression function for predicting a location of an object in a medical image based on an image patch is trained using image-based boosting ridge regression (IBRR). The trained regression function is used to determine a difference vector based on an image patch of a medical image. The difference vector represents the difference between the location of the image patch and the location of a target object. The location of the target object in the medical image is predicted based on the difference vector determined by the regression function.
摘要:
A system and method for performing shape-constrained aortic valve landmark detection using 3D medical images is provided. A rigid global shape defining initial positions of a plurality of aortic valve landmarks is detected within a 3D image. Each of the plurality of aortic valve landmarks is detected based on the initial positions.