Random access channel (RACH) design
    111.
    发明授权

    公开(公告)号:US11317444B2

    公开(公告)日:2022-04-26

    申请号:US16177055

    申请日:2018-10-31

    Abstract: Aspects of the present disclosure provide for random access channel (RACH) configuration in wireless communication systems. In some examples, a RACH configuration may be selected for use by a scheduled entity in transmitting a RACH signal to a scheduling entity based on an estimated timing advance value. The RACH configuration may include, for example, a transmission time of the RACH signal and/or a RACH waveform configuration identifying at least a cyclic prefix (CP) length and a guard time (GT) for the RACH signal. In some examples, the CP and GT length may each be set to the difference between an estimated maximum round-trip time (RTT) and an estimated minimum RTT between the scheduled entity and the scheduling entity. In some examples, the timing advance value may be estimated as the estimated minimum RTT.

    Determining sub-dominant clusters in a millimeter wave channel

    公开(公告)号:US11206074B2

    公开(公告)日:2021-12-21

    申请号:US16679793

    申请日:2019-11-11

    Abstract: Methods, systems, and devices for wireless communications are described. A first wireless device may receive a first beam measurement report from a second wireless device, the first beam measurement report indicating a first set of beam measurements for a wireless channel between the first wireless device and the second wireless device. The first wireless device may transmit to the second wireless device a cluster validity metric for at least one beam in the first beam measurement report. The first wireless device may receive from the second wireless device, in response to transmitting the cluster validity metric, a second beam measurement report indicating a second set of beam measurements for the wireless channel. The first wireless device may select a beam for transmitting to the second wireless device based at least in part on the first and second beam measurement reports.

    HIGHER RANK MULTIPLE INPUT MULTIPLE OUTPUT ENHANCEMENTS IN MILLIMETER WAVE AND SUB-TERAHERTZ BANDS

    公开(公告)号:US20210194551A1

    公开(公告)日:2021-06-24

    申请号:US17082529

    申请日:2020-10-28

    Abstract: Methods, systems, and devices for wireless communications are described for implementation of higher rank transmissions (e.g., higher rank line of sight (LOS) schemes) over a given beam direction associated with a selected transmission configuration indicator (TCI) state. According to some aspects, expanded antenna arrays, spatial separation (e.g., distance) between antenna elements, lower carrier frequencies (e.g., associated with frequency range 4 (FR4) systems), etc. may be leveraged to communicate uncorrelated signals (e.g., independent streams across spatial layers) for higher rank transmissions using a given TCI state (e.g., using a single beam direction). Various aspects of the described techniques may provide for higher rank directional communications by a user equipment (UE) (e.g., via uncorrelation in a single UE), higher rank directional communications by select UEs (e.g., via uncorrelation across specific UEs), base station antenna selection for uncorrelation at multiple served UEs, etc.

    Optimized secondary synchronization signal

    公开(公告)号:US11044072B2

    公开(公告)日:2021-06-22

    申请号:US15367475

    申请日:2016-12-02

    Abstract: Methods, systems, and devices for wireless communication are described. A wireless communications system operating in millimeter wave (mmW) spectrum may utilize synchronization signals for beam tracking. A synchronization signal (e.g., primary synchronization signals (PSS), secondary synchronization signals (SSS), etc.), beam reference signal, and/or control signal may be designed to facilitate beam tracking. A synchronization signal structure based on a repeated sequence in the time domain may facilitate searching for different beams in a timely manner. In some cases, the repeated synchronization signal structure may be achieved by using a larger tone spacing, and hence having shorter symbol duration and repeating the short symbols in the time domain. The repeated structure may be further used to encode additional information (e.g., facilitated by the resulting additional degrees of freedom). Additionally or alternatively, a synchronization signal (e.g., SSS) may be discrete Fourier transform (DFT) pre-coded to achieve better peak-to-average-power-ratio (PAPR).

    Discontinuous reception wake up procedures

    公开(公告)号:US11039499B2

    公开(公告)日:2021-06-15

    申请号:US16033013

    申请日:2018-07-11

    Abstract: Methods, systems, and devices for wireless communication are described for discontinuous reception (DRX) wake up procedures over millimeter wave (mmW) frequency resources. A base station may use multiple antenna ports to transmit one or more beamformed downlink transmissions to a user equipment (UE). The downlink transmissions may include beam-swept reference signals, and the UE may initiate a wake up procedure prior to a configured DRX-On cycle to receive the reference signals. Based on the reception of the reference signals, the UE may train a set of receive beams and determine a preferred downlink transmit beam. The base station may subsequently transmit at least a portion of a cell radio network temporary identifier (C-RNTI) in a beam-swept manner, and the UE may evaluate the C-RNTI transmission on the preferred transmit beam. The UE may also transmit an uplink response indicating the preferred transmit beam to receive downlink data.

Patent Agency Ranking