Abstract:
The present invention provides coordinated control methods of generator and SVC for improving power plant active power throughput and controller thereof. The method comprises: measuring the required input parameters for the generator and SVC control; judging the system topology and the control mode of SVC to determine the operation mode; and calculating the control reference based on the operation mode to control the generator and/or SVC. The proposed methods and coordinated controllers enable the SVC to share the required reactive power output of the power plant, convert the generator into “unity-power-factor-generator”, and therefore extend the active power output capability of the power plant.
Abstract:
A system includes a robot, comprising a manipulator and a controller, with a gripper mounted on the manipulator, for picking the battery for testing and sorting, a battery holding section for receiving batteries for testing and sorting at predetermined locations in the battery holding section, and a testing section disposed within the working range of the robot, for testing an electrical condition of the battery for testing and sorting, whereby the controller controls the manipulator and the gripper to first-pick the battery for testing and sorting at the predetermined location from the battery holding section and place it to contact the testing section for testing, the testing section tests the battery and sends to the controller a signal indicating the electrical condition of the tested battery, and the controller controls the manipulator and the gripper to second-pick the battery contacting the testing section and sort it according to the signal.
Abstract:
A method, a substation automation apparatus and an intelligent electronic device (IED) are disclosed which are, for example, not limited only to publishing data (data emanating) from the IED. An exemplary method includes assigning a unique identifier to one or more data fields, where the one or more data fields is associated with a short address attribute in the data emanating from the intelligent electronic device; and dynamically updating the identifier based on user specific configuration data by an IED application configuration tool. The IED can include a list of functions; (e.g., each function being represented as a logical node; and each logical node containing data objects); and a flexible addressing scheme for configuring the data objects and publishing data from the IED, but not only data emanating from IED.
Abstract:
A high voltage gas isolated bushing including a tubular shell with an end flange at each end of the shell creating an enclosed volume, a conductor suspended in the enclosed volume, having two ends, one end fixed to one end flange at a first fixation point and the other end fixed to the other end flange at a second fixation point. At least one of the end flanges is provided with a support body extending into the enclosed volume in the longitudinal direction of the bushing, and the body is arranged to support the conductor on at least one support point at a distance from the fixation point on the flange.
Abstract:
A dielectric insulation medium including a fluoroketone containing 5 carbon atoms, in a mixture with a dielectric insulation gas component different from the fluoroketone, in particular air or an air component, the dielectric insulation medium, in particular the dielectric insulation gas, having a non-linearly increased dielectric strength that is larger than a sum of dielectric strengths of the gas components of the dielectric insulation medium.
Abstract:
The present invention discloses a coordinated control method for power distribution system with DC bus electrification scheme and apparatus thereof. The method comprises: detecting what kind of disturbances occurs, and at least one of following steps: restoring the voltages of the failed DC buses if power loss is detected on the DC buses due to temporary or permanent failures of upstream power supplies; controlling the voltage of the abnormal DC buses if overvoltage or under-voltage is detected on the DC buses due to internal or external disturbances; and supporting the voltages of the abnormal AC buses if overvoltage or under-voltage is detected on the AC buses due to internal or external disturbances. The methods and apparatus can further improve the fault-ride-through capability for power plant under external or internal disturbances, and facilitate smooth automatic switching process between two DC buses etc.
Abstract:
The invention provides a method and device for auto-generating GOOSE signal connection topology from substation level based on IEC61850 standard. The method comprises the following steps: import substation configuration language (SCL) file; search all GOOSE input and output signals under each access point; match the output signals to the input signals; and generate GOOSE signal connection topology based on the result of said matching. The device comprises an importing module for importing substation configuration language file; a GOOSE signal analyzer for searching all of GOOSE input and output signals under each access point, and matching said GOOSE output signals to said GOOSE input signals; and topology data module for generating GOOSE signal connection topology based on said matching. The device comprises a storage module. The storage module comprises an input dataset for storing GOOSE input signals and an output dataset for storing GOOSE output signals and their matching input signals.
Abstract:
A process turning disc includes a first flange configured to support a cable package in a first direction and a second flange configured to support a cable package in a second direction opposite to the first direction. A connecting member connected to the first and the second flanges is configured to support a cable package in a third direction perpendicular to the first direction. A cable guide is fastened to the process turning disc in a detachable manner and includes a cable clamp configured to support a cable package in a fourth direction opposite to the third direction. The cable guide further includes two sliding surfaces configured to support a cable package in the first and the second directions outside of the cable clamp. A bending movement of the cable package is thereby allowed in a plane perpendicular to the axis of rotation of the process turning disc.
Abstract:
The invention relates to a high voltage device for providing electrical insulation of a conductor extending through the device. The device includes a hollow insulator; a conductor extending through the hollow insulator; a field gradient decreasing arrangement including a condenser core and a voltage grading shield. The condenser core and the voltage grading shield are arranged around the conductor inside the hollow insulator in a manner so that the voltage grading shield is arranged around at least part of the condenser core.
Abstract:
A device for controlling an electric field at a high voltage component including a resistive layer for field control, an insulating layer arranged on the resistive layer and a semi-conducting or conducting layer arranged on the insulating layer. The three layers meet at a triple point where the insulating layer ends. An interface between the resistive layer and the insulating layer makes in the triple point an angle to the semi-conducting or conducting layer of 60°-120°.