Abstract:
The present invention relates to a camera (1) that projects a pattern of visible light (28) onto an object such as a document (10) to be photographed to indicate to a photographer the area of the object within view of the camera. The camera comprising image capture means (18), a lens (2) arranged to image the document (10) in an object plane onto the image capture means (18), an image framing projector (2,20,22) operable to project visible optical radiation (24,26) onto the object plane to indicate to a user of the camera (1) the bounds (28) of the document (10) imaged onto the image capture means (18), and a camera attitude sensor system (9,15) for sensing the attitude of the camera (1). The image framing projector (2,20,22) is operable in response to the attitude sensor system (9,15) to project the optical radiation (24,26) onto the object plane only when the attitude sensor system (9,15) senses that the camera (1) is oriented so that the optical radiation (24,26) will be projected downwards.
Abstract:
When an image, which is an object of reading and which is recorded on a photographic film, is to be registered at a reading position of a film scanner by an operator, following processes are repeated: results of a CCD sensor picking-up the reading position and periphery thereof are fetched; a moving speed V of the photographic film is computed; if the moving speed V is greater than or equal to a reference value, results of pick-up are displayed on a CRT as a high-speed, monochromatic dynamic image; and if the moving speed is less than the reference value, the results of pick-up are displayed on the CRT as a highly-detailed, color dynamic image. In this way, a dynamic image display mode is automatically switched in accordance with changes in the moving speed v during a registration operation, and registration of the image can be carried out quickly and accurately.
Abstract:
An image pickup apparatus includes a video camera shooting a material placed on a stage to obtain an image signal delivered to an external reproducing equipment and a column for supporting the video camera so that the video camera is located over a central portion of the stage. The column is formed into a vertical two-stage structure including an upper column and a lower column. The video camera is located over the central portion of the stage when the lower column is rotated to stand and the upper column is extended straightforward from the lower column. The upper column is rotated so as to be folded at right angles to the lower column when an object in the rear of the stage is shot by the video camera. When the apparatus is folded, the lower column is brought down to lie along the stage and the upper column is folded relative to the lower column.
Abstract:
A two-dimensional image input unit is disposed on one surface, and data processed by an image processing circuit for processing an image input by the image input unit can be displayed on a two-dimensional image output unit disposed on the other surface as a rear surface with respect to the one surface. Size and cost reductions of the entire apparatus are attained, and read image information can be displayed on the image output surface as the upper surface in real time.
Abstract:
The present invention relates to a method of reconstructing an image from scanned parts of an original image obtained by relative movement between a scanning device and the original image so that adjacent scanned image swaths overlap. The scanning device comprises navigation means for determining the position of the scanning device relative to the original image. Navigation corrections are calculated by correlating features within the area of overlap between adjacent swaths.
Abstract:
The compact document imager and display apparatus has a two-dimensional image sensor array, a flat panel display such as a liquid crystal display (LCD), and processing electronics. An illumination source can be added to illuminate the document on the sensor array and to provide backlight for the LCD. Color imaging may be achieved by providing three sequential illumination pulses of appropriate colors. A document is placed in close contact with the sensor array. The document is illuminated and an electronic image is captured and stored in the processing electronics. The captured image can be displayed on the LCD by the processing electronics. The document, such as a single sheet of paper or a transparency, can be illuminated by the room light to perform image capture. The compact document imager can be used as a facsimile machines by providing telephone connections. Documents can be scanned using the sensor array and sent to other devices. Documents can be received from other sources and displayed on the LCD. A light-pen can be used to generate handwritten documents or highlight portions of documents. An X-ray imaging device is created by placing a thin phosphor sheet in contact with the sensor array. The x-ray imaging device is placed over an object illuminated by X-rays and the image produced by the glowing phosphorous is stored and displayed by the LCD.
Abstract:
A scanning device and method of forming a scanned electronic image include an imaging sensor and at least one navigation sensor. For an embodiment, the imaging sensor enables sensing of color images. In the preferred embodiment, the imaging sensor is a linear array of sensor elements, with a two-dimensional navigation sensor array at each end. The scanning device has three degrees of freedom, since position information from the navigation sensors allows manipulation of an image signal from the imaging sensor to reduce distortion artifacts caused by curvilinear scanning. Acceptable sources of the position information include printed matter and contrast variations dictated by variations in the inherent structure-related properties of the medium on which the scanned image is formed. Inherent structure-related properties can also include color contrast. Illumination for optimal operation of the navigation system may be introduced at a grazing angle in some applications or in the normal to a plane of the original in other applications, but this is not essential.
Abstract:
In order to make it possible to see both a film accommodated in a film carrier and a film accommodated in a sheath, a carrier holder is rotatably provided in the upper portion of a viewer main body containing an imaging optical system, a CCD and a signal processing circuit, a carrier inlet is formed in the carrier holder, and head covers are mounted on the carrier holder so as to be capable of being opened and closed. The head covers are provided with a lighting lamp. Supporting arms are mounted on both sides of the viewer main body so as to be capable of being opened and closed.
Abstract:
The present invention is directed to a hand-held scanning device which contacts an object to be scanned only at substantially colinear points, e.g., via a roller. This configuration allows the scanning device to scan very close to the edge of an object to be scanned while remaining fully supported by the object. In order to counteract detrimental effects caused by tilting of the scanning device during a scan, the scan region of the scanning device is located close to the roller, a relatively high f-number lens is used and a widened illumination area is employed. The scanning device is also configured to provide for easy grasping by a user and to allow the user to view the scan region during a scan.
Abstract:
An image scanner comprises an image sensor for inputting image data, a rotary encoder, LED and read out window for reading image data, a buffer D RAM, ROM and S RAM for storing image data, a LCD display for displaying input image data, a power source for supplying electrical power, and a memory card for communicating stored image data to a host, wherein the above elements are formed as a cordless, card-shaped unit.