Abstract:
Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.
Abstract:
A wrought aluminium material with improved damage tolerance while preserving the high strength of the material is disclosed. Furthermore, a cast aluminium material of a precipitation hardenable aluminium alloy is disclosed, the material comprising grains having two distinct zones with a first centre zone enriched in elements capable of reacting peritectically with aluminium and a second zone, surrounding the first zone, enriched in elements capable of reacting eutectically with aluminium.
Abstract:
The present invention provides an Ni-based intermetallic compound alloy having excellent hardness. The present invention provides an Ni-based dual multi-phase intermetallic compound alloy comprising Ni as a main component, and 5 to 12 atomic % of Al, 11 to 17 atomic % of V and 1 to 5 atomic % of Re, and having a dual multi-phase microstructure including a primary precipitate L12 phase and a (L12+D022) eutectoid microstructure.
Abstract:
The invention relates to a steel plate, the chemical composition of which comprises, the contents being expressed by weight: 0.010%≦C≦0.20%, 0.06%≦Mn≦3%, Si≦1.5%, 0.005%≦Al≦1.5%, S≦0.030%, P≦0.040%, 2.5%≦Ti≦7.2%, (0.45×Ti)−0.35%≦B≦(0.45×Ti)+0.70%, and optionally one or more elements chosen from: Ni≦1%, Mo≦1%, Cr≦3%, Nb≦0.1%, V≦0.1%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting.
Abstract translation:本发明涉及一种钢板,其化学组成包括:以重量计:0.010%@ C @ 0.20%,0.06%@ Mn @ 3%,Si @ 1.5%,0.005%@ Al @ 1.5% ,S@0.030%,P@0.040%,2.5%@ Ti @ 7.2%,(0.45×Ti)-0.35%@ B(0.45×Ti)+ 0.70%,以及任选的一种或多种选自Ni @ 1%,Mo @ 1%,Cr @ 3%,Nb @ 0.1%,V @ 0.1%,由冶炼产生的铁和不可避免的杂质组成的组成的余量。
Abstract:
A C+N austenitic stainless steel includes 15 to 20% by weight of chromium (Cr), 8 to 12% by weight of manganese (Mn), 3% or less by weight of nickel (Ni), and 0.5 to 1.0% by weight of a total content (C+N) of carbon (C) and nitrogen (N), remainder iron (Fe), and other inevitable impurities. A ratio (C/N) of the carbon (C) to the nitrogen (N) ranges from 0.5 to 1.5. It is possible to provide austenitic stainless steel having excellent low-temperature toughness while satisfying the requirements of strength, ductility, and pitting corrosion resistance and minimizing the nickel content
Abstract:
A steel sheet which is decarburized after being strip casted and a method for manufacturing the same are provided. A method for manufacturing the steel sheet includes i) providing molten iron, ii) removing sulfur, phosphorus, and silicon from the molten iron, iii) strip casting the molten iron and providing the steel sheet, and iv) heating and contacting the steel sheet with an oxidization gas while decarburizing the steel sheet.
Abstract:
Methods for manufacturing cast titanium helmets include casting a helmet in an oversized mold. The resulting oversized cast helmet is then exposed to a hot isostatic press (HIP) process that applies heat and pressure for a predetermined period of time. The resulting oversized cast helmet is then exposed to an acid bath that chemically mills the helmet to a desired thickness and removes contaminants formed during casting of titanium.
Abstract:
ProblemTo provide an aluminum alloy brazing sheet, featuring a good brazing property that prevents diffusion of molten filler material in a core material of the aluminum alloy brazing sheet during a brazing process and exhibiting a superior corrosion resistance to an exhaust gas condensate water after the brazing process, a method of manufacturing the aluminum alloy brazing sheet, and a high corrosion-resistant heat exchanger using the aluminum alloy brazing sheet.Resolving MeansA high corrosion-resistant aluminum alloy brazing sheet comprises a core material composed of an aluminum alloy, a sacrificial anode material cladded on one surface of the core material, and a filler material composed of an Al/Si-based alloy and cladded on another surface of said core material, and is characterized in that the sacrificial anode material is composed of an aluminum alloy which contains Si falling within a range of 2.5-7.0 mass %, Zn falling a range of 1.0-5.5 mass %, Fe falling within a range of 0.05-1.0 mass %, and which is composed of the balance Al and the inevitable impurities, and that a clad thickness of the sacrificial anode material falling within a range of 25-80 μm. Also, there is provided a method of manufacturing the aluminum alloy brazing sheet, and a high corrosion-resistant heat exchanger using the aluminum alloy brazing sheet.
Abstract:
A Zr-based amorphous alloy and a method of preparing the same are provided. The Zr-based amorphous alloy is represented by the general formula of (ZraM1-a)100-xOx, in which a is an atomic fraction of Zr, and x is an atomic percent of 0, in which: 0.3≦a≦0.9, and 0.02≦x≦0.6; and M represents at least three elements selected from the group consisting of transition metals other than Zr, Group IIA metals, and Group IIIA metals.
Abstract:
A forging tool for precision forging of components of intermetallic or high-temperature stable phases with high yield stresses and shapeable at temperatures up to 1400° C. is made of graphite with a low-melting metal or a low-melting metal alloy infiltrated into its open-pored cavities, where metal carbides are created by heat treatment and form with the graphite a two-phase material hardened by subsequent quenching. The tool features high strength thanks to the yield stress increasing as the temperature increases at forging temperatures up to 1400° C., and is oxidation-resistant. It is electrically conductive, and has a low heat capacity, so that rapid inductive heating of the tool involving only low energy expenditure, short forging cycles and an inexpensive isothermic shaping process are possible. It has good lubrication properties, low wear and low manufacturing costs.