Abstract:
Provided are a heat exchanger that does not impede downsizing and removes water in the heat absorbing pipe adequately with a simple configuration even when the reduction in diameter of the heat absorbing pipe is made. A heat exchanger 5 in which heat absorbing pipes 51 are disposed in a multi-tier arrangement within a casing 50 which is the passage of combustion exhaust gas, both pipe ends 511,512 of each of the heat absorbing pipes 51 are connected respectively to two headers 54, 55 provided on a side plate 52 of the casing 50, and water introduced from an external pipe 63 to each of the heat absorbing pipes 51 through the header 54 is heat-exchanged and heated by combustion exhaust gas. The pipe ends 511, 512 of the heat absorbing pipes 51 are arranged at a predetermined vertical interval. A drainage plate 56 for forming a drainage passage through which the water that has reached the pipe end openings 51A of respective heat absorbing pipes 51 is removed during drainage operation for the heat absorbing pipes 51, is disposed in the header 54 disposed on a lower side of the heat absorbing pipes 51 so as to face a number of the pipe end openings 51A vertically arranged in a state of continuous.
Abstract:
A latent heat exchanger (1) has a casing (2), a heat-absorbing tube (50) accommodated in the casing (2), an inlet header (60), and an outlet header (70). The casing (2) has a casing main body (10) and a top plate (40) closing an upper opening (16) of the casing main body (10). The back wall (11), the front wall (12), the bottom wall (13), one side wall (14), and the other side wall (15) of the casing main body (10) are formed integrally by draw-processing a single metal plate.
Abstract:
A rotary fluid machine includes a first operating part (49) and a second operating part (57), which are groups of axial piston cylinders, wherein a rotary valve (61) for controlling the intake and discharge of a working medium to and from the first and second operating parts (49, 57) is formed from a first valve part that has a flat sliding surface (68) perpendicular to a rotational axis (L) of the rotor (27) and controls the intake and discharge of the working medium to and from the first operating part (49), and a second valve part that has a cylindrical sliding surface (71) centered on the rotational axis (L) of the rotor (27) and controls the intake and discharge of the working medium to and from the second operating part (57). Since the intake and discharge of the working medium to and from the first and second operating parts (49, 57) are controlled by the common rotary valve (61), the size of the rotary fluid machine can be reduced.
Abstract:
A chain belt for stepless speed change transmission is provided wherein the connecting link rocker pins are arranged so that when the chain links are rotated relative to each other the pitch changes. This phenomena is used to reduce the drive noise generated with standard types of chain belts when they wrap around the drive pulley, due to a change in the relative speed of the drive block. From tests it is found that having the drive blocks outside of the chain line is more effective in reducing this relative velocity. Further having oval shaped drive blocks reduces the stress concentration at the region where load is transferred from the pulley to the chain belt, and by having an oval shape instead of a round shape the inclined end contact faces can be positively aligned to mate properly with the drive faces of the pulleys.
Abstract:
An integral transmitter-receiver optical communication apparatus, including: a transmitter-receiver device including: a transmitter having a laser source for emitting a laser beam modulated in accordance with a transmission information signal, a receiver having a position detecting sensor and a light receiving element each of which receives a complementing modulated laser beam transmitted from a complementing transmitter, and a beam splitting device for splitting the modulated laser beam and the complementing modulated laser beam into two separate laser beams; a telescopic optical system for transmitting the modulated laser beam emitted by the laser source, and for receiving the complementing modulated laser beam transmitted from the complementing transmitter, the telescopic optical system including a first afocal optical system; a light beam deflecting device positioned between the telescopic optical system and the transmitter-receiver device, wherein the light beam deflecting device is controlled in accordance with a signal output from the position detecting sensor; and a second afocal optical system positioned between the light deflecting device and the transmitter-receiver device.
Abstract:
A planetary gear transmission typically for use on automobiles has first, second, and third planetary gear trains arranged coaxially with each other and each having elements including a sun gear, a carrier, and a ring gear. Two of the elements of each of the first, second, and third planetary gear trains are directly or disengageably coupled to elements of the other planetary gear trains between input and output members. The elements of the first, second, and third planetary gear trains are corotatably coupled into first, second, third, fourth, and fifth rotational members the first, second, and fifth rotational members being coupled to the input member, the fourth rotational member being coupled to the output member. The planetary gear transmission also has a separating clutch disposed between the elements of the second rotational member, for disengageably connecting the elements of the second rotational member.
Abstract:
Provided are a heat exchanger that does not impede downsizing and removes water in the heat absorbing pipe adequately with a simple configuration even when the reduction in diameter of the heat absorbing pipe is made. A heat exchanger 5 in which heat absorbing pipes 51 are disposed in a multi-tier arrangement within a casing 50 which is the passage of combustion exhaust gas, both pipe ends 511,512 of each of the heat absorbing pipes 51 are connected respectively to two headers 54, 55 provided on a side plate 52 of the casing 50, and water introduced from an external pipe 63 to each of the heat absorbing pipes 51 through the header 54 is heat-exchanged and heated by combustion exhaust gas. The pipe ends 511, 512 of the heat absorbing pipes 51 are arranged at a predetermined vertical interval. A drainage plate 56 for forming a drainage passage through which the water that has reached the pipe end openings 51A of respective heat absorbing pipes 51 is removed during drainage operation for the heat absorbing pipes 51, is disposed in the header 54 disposed on a lower side of the heat absorbing pipes 51 so as to face a number of the pipe end openings 51A vertically arranged in a state of continuous.
Abstract:
Disclosed is an integral transmitter-receiver optical communication apparatus, including: a transmitter-receiver device which includes: a transmitter having a laser source for emitting a laser beam modulated in accordance with a transmission information signal, a receiver having a position detecting sensor and a light receiving element which receive a complementing modulated laser beam transmitted from a complementing transmitter, and a beam splitting device for splitting the modulated laser beam and the complementing modulated laser beam which are incident thereon as two separate laser beams; a telescopic optical system for transmitting the modulated laser beam emitted by the laser source and for receiving the complementing modulated laser beam transmitted from the complementing transmitter; and a light beam deflecting device positioned between the telescopic optical system and the transmitter-receiver device, wherein the light beam deflecting device is controlled in accordance with a signal output from the position detecting sensor.
Abstract:
An optical axis correcting system includes a first afocal optical system, an optical deflector which corrects the deviation of an optical axis of light incident upon the first optical system, a second afocal optical system, and a light convergent optical system. The optical axis correcting system satisfies (1) 3.60
Abstract:
A support shaft is fixed to a casing of a transmission. A main shaft is relatively rotatably fitted to an inner periphery of the support shaft with a needle bearing interposed therebetween, and a clutch hub is relatively rotatably fitted to an outer periphery of the support shaft. An annular groove is defined around the outer periphery of the support shaft and divided into an oil discharge groove and an oil supply groove by a pair of weirs. An oil supplied from an oil passage is supplied to a canceller oil chamber through the oil supply groove and oil holes in the clutch hub. The oil in the canceller oil chamber is discharged through the oil holes, the oil discharge groove, oil passages in the support shaft, the needle bearing and oil passages in the main shaft. Thus, it is possible to quickly supply and discharge the oil into and from the canceller oil chamber in the hydraulic clutch, thereby preventing a failure of engagement of the hydraulic clutch at the starting of an engine at a low temperature and a dragging of the hydraulic clutch after the starting of an engine.