Abstract:
A method of pairing users for an uplink multi-user multiple-input-multiple-output (MU-MIMO) system under coordinated multipoint transmission (CoMP) scenario in a communication system, which includes: selecting, by a first cell of the communication system, at least one initial user served by the cell as a first paired user; selecting, by the first cell, a candidate paired user according to the service type of the first paired user; and determining, from the different service types of the first paired user and the candidate paired user, a pairing type to be formed, and determining whether the candidate paired user and the first paired user can be paired into the pairing type to be formed by using a predetermined determination criterion according to the pairing type. It is further provided a device for performing the method. The throughput and communication efficiency of the communication system can be improved with the method and device for pairing users.
Abstract:
A method of irradiating a target tissue in a patient comprising positioning the patient on a patient support system so that the target tissue in the patient is within irradiating distance of at least one source of a beam of radiation and moving the patient support system relative to the at least one source of a beam of radiation and, coordinately with movement of the patient support system, rotating the at least one source of radiation relative to the target tissue, which comprises and/or is adjacent to a non-target tissue, so that the center of rotation of the beam of radiation is placed at one or more desired locations within the target tissue, while simultaneously and/or sequentially irradiating the target tissue; a collimator; a method of making such a collimator; a system for irradiating a target tissue in a patient; and a method of planning irradiation of a target tissue in a patient.
Abstract:
Systems and method provide a coverage-guided systematic testing framework by dynamically learning HaPSet ordering constraints over shared object accesses; and applying the learned HaPSet ordering constraints to select high-risk interleavings for future test execution.
Abstract:
A television is disclosed in the present invention, which includes a television core subsystem, a television function extension component and a gold finger connecter. The television core subsystem is configured within the interior of the television for receiving audio/video signal in different formats. The television function extension component is used for providing the option of different functions. The gold finger connector is electronically connected between the television core subsystem and the television function extension component, and includes a first connecting end and a second connecting end; wherein the first connecting end is configured on the television function extension component, the second connecting end is electronically connected to the television core subsystem, and the power signal terminal, communication signal terminal and audio/video signal terminal of the first connecting end correspond respectively to the power signal terminal, communication signal terminal and audio/video signal terminal of the second connecting end.
Abstract:
A method of irradiating a target tissue in a patient comprising positioning the patient on a patient support system so that the target tissue in the patient is within irradiating distance of at least one source of a beam of radiation and moving the patient support system relative to the at least one source of a beam of radiation and, coordinately with movement of the patient support system, rotating the at least one source of radiation relative to the target tissue, which comprises and/or is adjacent to a non-target tissue, so that the center of rotation of the beam of radiation is placed at one or more desired locations within the target tissue, while simultaneously and/or sequentially irradiating the target tissue; a collimator; a method of making such a collimator; a system for irradiating a target tissue in a patient; and a method of planning irradiation of a target tissue in a patient.
Abstract:
A symbolic predictive analysis method for finding assertion violations and atomicity violations in concurrent programs is shown that derives a concurrent trace program (CTP) for a program under a given test. A logic formula is then generated based on a concurrent static single assignment (CSSA) representation of the CTP, including at least one assertion property or atomicity violation. The satisfiability of the formula is then determined, such that the outcome of the determination indicates an assertion/atomicity violation.
Abstract:
A symbolic disjunctive image computation method for software models which exploits a number of characteristics unique to software models. More particularly, and according to our inventive method, the entire software model is decomposed into a disjunctive set of submodules and a separate set of transition relations are constructed. An image/reachability analysis is performed wherein an original image computation is divided into a set of image computation steps that may be performed on individual submodules, independently from any others. Advantageously, our inventive method exploits variable locality during the decomposition of the original model into the submodules. By formulating this decomposition as a multi-way hypergraph partition problem, we advantageously produce a small set of submodules while simultaneously minimizing the number of live variable in each individual submodule. Our inventive method produces a set of disjunctive transition relations directly from the software model, without producing a conjunctive transition relation—as is necessary in the prior art. In addition, our inventive method exploits the exclusive use of live variables in addition to novel search strategies which provide still further benefit to our method.
Abstract:
An extra-low vibration cryostat, which incorporates a cryocooler and cryostat to cool and house a vibration-sensitive device, with the cryocooler and cryostat sealed gas-tight to each other, but mechanically isolated, so that vibration from the cryocooler does not affect the device.
Abstract:
A method for reducing eddy currents caused by the gradient magnetic field in a magnetic resonance system employs an anti-eddy current device formed by a number of laminated metallic plates, and includes the steps of calculating the distribution of the main magnetic field of the magnetic resonance system in the anti-eddy current device, calculating the distribution of the main magnetic field and the gradient magnetic field in the anti-eddy current device, subtracting the calculated distribution of the main magnetic field in the anti-eddy current device from the calculated distribution of the main magnetic field and the gradient magnetic field in the anti-eddy current device, to obtain the distribution of the gradient magnetic field in the anti-eddy current device, and adjusting the setting of the metallic plates of the anti-eddy current device based on the distribution of the gradient magnetic field in the anti-eddy current device, so as to reduce the eddy current. The adjustment in the metallic plates of the anti-eddy current device should be such that the gradient magnetic field is parallel to or substantially parallel to the plane of the metallic plates. The metallic plates can be further divided into a number of areas, or the laminating direction of the metallic plates in different areas can be adjusted according to the specific distribution of the gradient magnetic field to obtain the optimum effect of eddy current reduction.
Abstract:
A three-stage pulse-tube cryocooler, in which the third stage pulse tube is arranged below the second stage pulse tube, with a gas flow conduit between the second stage pulse tube heat exchanger and the cold end of the second stage regenerator. The design of the invention is much simpler than a conventional three-stage parallel pulse tube cooler, requiring only two pulse tubes at the warm (room temperature) end and two reservoirs, with a corresponding reduction in the number of associated orifices, passages, etc. In effect, this provides a three stage cryocooler with a two-stage warm end design by putting the second and third stage pulse tubes in series, with a gas flow passage providing gas flow between the second and third stages for gas expansion and refrigeration. The three-stage design allows an intermediate temperature connection between the temperatures of the first and third stages, for applications which require three cooling temperatures.