Abstract:
An additive manufacturing process for forming a metallic layer on the surface of the substrate includes fabricating a substrate from a polymerizable composition by a stereolithographic process, and contacting the reactive surface with an aqueous solution including a metal precursor. The metal precursor includes a metal, and the polymerizable composition includes a multiplicity of multifunctional components. Each multifunctional component includes a reactive moiety extending from a surface of the substrate to form a reactive surface. An interface between the reactive surface and the aqueous solution is selectively irradiated to form nanoparticles including the metal in a desired pattern. The nanoparticles are chemically coupled to the reactive surface by reactive moieties, thereby forming a metallic layer on the surface of the substrate.
Abstract:
A method and device for feeding back downlink channel feedback information, and a method and device for user pairing. The method for feeding back downlink channel feedback information includes: calculating the multi-user channel quality indication error of a user, which error is used to reflect the difference in channel quality indication between the situation of multi-user multiple input multiple output transmission and the situation of single user multiple input multiple output transmission; adding the multi-user channel quality indication error into the downlink channel feedback information which includes a pre-coding matrix indication and a channel quality indication, and feeding the same back to a base station for scheduling. Therefore, the bit error rate of demodulation in the MIMO system can be reduced and the system performance can be improved.
Abstract:
The present embodiments provide a gradient coil assembly. The gradient coil assembly includes an aluminum wire body, and a copper wire end connected by cold pressure welding to two ends of the aluminum wire body. Using the gradient coil according to a particular embodiment, it is possible to reduce gradient coil weight as well as reduce the thickness of an outer vacuum chamber used for a magnet, thereby reducing the cost of the magnet and gradient coil, and making it less difficult to install and maintain the magnet and gradient coil. There is no problem of oxidation associated with the cold pressure welding of the aluminum wire body to the copper wire ends, so quality defects arising from such oxidation are avoided.
Abstract:
Provided is an antenna system, including a system ground unit, a metal back cover, a frame as antenna radiator, and a grounding circuit, a feeding circuit and a tuning switch, the antenna radiator includes a main radiator and an auxiliary radiator; the main radiator includes a first main radiator which forms, together with the metal back cover, a first main gap, a second main radiator extending from the first main radiator and forms, together with the metal back cover, a second main gap, and a first fracture separating the first main radiator into two parts; the auxiliary radiator includes a first auxiliary radiator which forms, together with the metal back cover, a first auxiliary gap, a second auxiliary radiator extending from the first auxiliary radiator and forms, together with the metal back cover, a second auxiliary gap, and a second fracture separating the first auxiliary radiator into two parts.
Abstract:
An antenna system applicable to a mobile communication device is provided in the present disclosure. The antenna system includes a metal shell with a metal frame and a metal back cover, a printed circuit board (PCB) housed in the metal shell, and an antenna part with a first feed point and a second feed point. A first break point and a second break point are formed at two opposite sides of the metal frame; a first gap and a second gap are respectively formed at two opposite sides of the metal back cover for defining a first clearance area and a second clearance area. The first feed point is located in the first clearance area and contacts a left frame portion of the metal frame; the second feed point is located in the second clearance area and contacts a right frame portion of the metal frame.
Abstract:
An embodiment of an integrated stripline feed network for a linear antenna array comprises a power distribution network coupled to the linear antenna array; a feed signal input/output component coupled to the power distribution network; wherein the input/output component receives a feed signal and splits the feed signal for distributing to a plurality of antenna elements of the linear antenna array through the power distribution network. The integrated stripline feed network is configured to be integrated into a support body of the linear antenna array, wherein, the support body structurally supports the linear antenna array.
Abstract:
An image dithering module is provided. The image dithering module includes a plurality of data processing channels. The data processing channels respectively process image data of each pixel or sub-pixel in an image frame. Each of the data processing channels includes a bit processing unit and a bit truncator unit. The bit processing unit mixes first pixel data with random data to generate second pixel data. The bit truncator unit truncates partial bits of the second pixel data to generate third pixel data.
Abstract:
A codebook based channel information feedback method, device and system are provided in the present invention. The codebook based channel information feedback method includes: measuring, by a terminal in a communication system, a parameter of a downlink channel between the terminal and a base station of the communication system; selecting a plurality of precoding matrixes from a precoding codebook by using the parameter of the downlink channel, wherein a plurality of the precoding matrixes can be used by both of single-user multi-input multi-output (MIMO) transport mode and multi-user MIMO transport mode, and the precoding codebook is an aggregation of precoding matrixes; and feeding back a first information for indicating a plurality of the precoding matrixes to the base station.
Abstract:
An antenna assembly is disclosed. The antenna assembly includes a radiation body, an antenna feed portion, a RF feed portion, a first branch having one end electrically connecting to the antenna feed portion, and another end electrically connects to a first feed point of the radiation body, the first feed point dividing the radiation body into a first radiation portion and a second radiation portion. The antenna assembly further includes a second branch electrically connecting to a second feed point of the second radiation portion, an impedance matching circuit coupled between the antenna feed portion and the RF feed portion. The impedance matching circuit receives the low frequency signals and matches the impedance, then feeds to the antenna feed portion.
Abstract:
A single-photon counting imaging system and method includes an optical filter, first and second lenses, a digital micro-mirror device (DMD) control system, a single-photon counter and a data processing unit. The DMD and first and second lenses convert two-dimensional image data into a one-dimensional sequence. The ultra-weak light is filtered by the optical filter, after which the ultra-weak light image onto the DMD through the first lens. The DMD controls the probability of the photons reflected to the second lens and the second lens controls focusing of the photons. The data processing unit and single-photon counter complete sparse reconstruction. The data processing unit converts the number of photons counted by the single-photon counter within a certain period of time into the probability of detected photon counts. A photon density image is reconstructed by adopting an optimization algorithm based on the measurement matrix on the DMD and the measured value.