Abstract:
A method and apparatus for performing transmit (Tx) power control in a convergence network of a plurality of communication systems. A method for performing transmit power control (TPC) in a plurality of communication system convergence networks includes receiving, by a first entity of a first communication system, a TPC information request message requesting information associated with transmit power control (TPC) from a second entity of a second communication system; upon receiving a request of the TPC information request message, transmitting a first TPC information reporting message, which includes a maximum transmit (Tx) power value of the first entity and an interference signal value caused by a neighbor entity of the first entity, to the second entity; receiving a TPC command message, which includes information of the maximum Tx power value of the first entity adjusted based on the maximum Tx power value of the first entity and the interference signal value, from the second entity; and adjusting the maximum Tx power value of the first entity based on the information regarding the adjusted maximum Tx power of the first entity.
Abstract:
The present invention relates to a wireless access system and provides methods and apparatuses for controlling and supporting dynamic cell on or off. In an embodiment of the present invention, a method for supporting on or off of a second cell at a first cell in a wireless access system includes receiving a cell on/off state indicator message indicating on or off of the second cell from the second cell, adjusting a handover offset of the second cell, taking into account interference caused by the on or off of the second cell, and transmitting handover offset information about the adjusted handover offset to at least one of the second cell and a first User Equipment (UE).
Abstract:
A method for receiving downlink data by the terminal in a wireless communication system, includes receiving, from a base station, downlink control information for scheduling a short physical downlink shared channel (sPDSCH) on a short physical downlink control channel (sPDCCH), and receiving, from the base station, downlink data on the sPDSCH based on the downlink control information. Here, the sPDCCH and the sPDSCH are based on a first transmission time interval (TTI)-based radio frame structure, wherein the first TTI-based radio frame structure is shorter in time than a second TTI-based radio frame structure related to (i) a physical downlink shared channel (PDSCH) and (ii) a physical downlink control channel (PDCCH). Further, a number of resource element groups (REGs) consisting of a control channel element (CCE) related to the sPDCCH is smaller than a number of resource element groups (REGs) composed of a CCE related to the PDCCH.
Abstract:
The present description provides a method for transmitting uplink (UL) data in a wireless communication system. A method, which is carried out by means of a terminal, comprises the steps of: receiving, from a base station, control information related to transmission of low latency radio (LLR) service data; transmitting, on the basis of the received control information, the low latency radio service data to the base station through an urgent channel, wherein the control information comprises urgent channel information and/or urgent bearer information defined for transmission of the low latency radio service data.
Abstract:
The present invention relates to a wireless communication system. In detail, the present invention is a method for transmitting data to a base station (BS) by a user equipment (UE) includes: receiving information on a contention-based Physical Uplink Shared Channel (PUSCH) zone including a plurality of contention-based PUSCH resource blocks from the base station (BS); allocating at least one contention-based PUSCH resource block for transmission of the data based on the information on contention-based PUSCH zone; and transmitting the data to the base station (BS).
Abstract:
A method for transmitting data by a user equipment (UE), includes configuring a Physical Uplink Shared Channel (PUSCH) configuration related to a physical random access channel (PRACH), wherein the PUSCH configuration includes parameters for a time interval for allocating PUSCH zones and a number of contiguous PUSCH zones in time domain, and transmitting the PRACH and a PUSCH based on the PUSCH configuration.
Abstract:
The present specification relates to a method for transceiving uplink data (UL data) in a wireless communication system, the method performed by a user equipment (UE) comprising: receiving a first uplink grant (UL grant) from a base station; transmitting a first item of uplink data (UL data) to the base station on the basis of the first uplink grant; receiving, from the base station, a HARQ response to the first item of uplink data; and transmitting a second item of uplink data (UL data) to the base station, wherein the method further comprises a step of transceiving, with the base station, indication information indicating whether the second item of uplink data is HARQ data or non-HARQ data.
Abstract:
The present invention relates to a method and an apparatus for transmitting and receiving data in a wireless communication system. The present invention may provide a method comprising the steps of: receiving, from a terminal, an urgent signal indicating the occurrence of an event related to an urgent situation; and transmitting, to at least one terminal included in a cell, a response signal for notifying the at least one terminal of the occurrence of the event.
Abstract:
Disclosed is a method for a terminal, which comprises a plurality of distributed antenna units, transmitting and receiving a signal in a wireless communication system. More particularly, the method comprises the steps of 1) performing a first random access procedure with a first cell by means of a first distributed antenna unit group and performing a second random access procedure with a second cell by means of a second distributed antenna unit group; 2) transmitting, to the first cell and the second cell, information about the distributed antenna units comprised in the corresponding antenna unit groups; and 3) performing an authorization procedure with the first cell by means of the first distributed antenna unit group and transmitting an authorization procedure skip request signal to the second cell by means of the second distributed antenna unit group.
Abstract:
A method and apparatus for transmitting and receiving data in a wireless communication system that supports a low latency service are provided. A terminal may transmit a request message for transmission and reception of low latency service data in an idle state to a base station and receive a response message including resource information related to transmission and reception of the low latency service data in response to the request message from the base station to transmit and receive the low latency service data.