Abstract:
A method for transmitting an SRS by a terminal may comprise the steps of: receiving, from a base station, information on a first bandwidth part (BWP) and a second BWP set for SRS transmission of the terminal; and when a frequency starting position for SRS transmission in the second BWP having a lower priority than the first BWP overlaps the first BWP, transmitting the SRS to the base station at an SRS bandwidth position different from an SRS bandwidth position associated with the frequency starting position for the SRS transmission.
Abstract:
A method for transmitting, by a terminal, an SRS in a wireless communication system comprises the steps of: receiving, from a base station, control information including SRS resource pool information for tracking a transmission beam of the terminal; and transmitting the SRS to the base station on the basis of the control information, wherein the SRS is an SRS used for tracking the transmission beam of the terminal.
Abstract:
One embodiment according to the present invention, with respect to a sounding method of user equipment (UE) in a wireless communication system, comprises the steps of: receiving configuration of one or more sounding reference signal (SRS) resource sets from a base station; receiving, from the base station, activation command information commanding the SRS transmission activation of a particular SRS resource set from among the one or more SRS resource sets; and transmitting, to the base station, the SRS corresponding to the particular SRS resource set, wherein the reference signal, for which a spatial relationship is assumed for each SRS resource included in the particular SRS resource set, can be determined on the basis of the activation command information.
Abstract:
A method for performing self-interference cancellation by a device using an FDR mode comprises a step for performing nonlinear digital self-interference cancellation on the basis of a condition defined for the nonlinear digital self-interference cancellation, wherein the defined condition can comprise information about the order of a self-interference component to be considered for the nonlinear digital self-interference cancellation in correspondence with transmission power of the device.
Abstract:
The present invention relates to methods for determining whether to perform millimeter wave (mmWave) scanning in a mmWave system, and a device supporting same. The method for a terminal performing mmWave scanning in a wireless access system supporting mmWave technology, according to one embodiment of the present invention, comprises the steps of: attempting to detect a mmWave pilot signal by monitoring a mmWave pilot detection window in a mmWave band; and transmitting, to an uplink of a legacy band, a feedback signal for indicating whether the mmWave pilot signal is detected, wherein the method may further comprise the step of, if the mmWave pilot signal is detected, performing mmWave ray scanning with a base station, or the step of, if the mmWave pilot signal is not detected, determining whether to perform mmWave beam scanning or whether to perform legacy communication.
Abstract:
A method for supporting a sporadic high-capacity packet service by a terminal may comprise the steps of: receiving, from a base station, control information including pre-defined timing information for synchronization and resource allocation information associated with the terminal; when uplink traffic occurs, performing transmission synchronization on the basis of the pre-defined timing information for synchronization; selecting a resource for uplink data transmission on the basis of the resource allocation information; and transmitting uplink data through the selected resource.
Abstract:
A method for removing a self-interference signal by a device supporting an FDR mode can further comprise the steps of: transmitting a signal to a counterpart node in a predetermined time interval; generating, in an RF stage of the device, a residual self-interference signal after removal of an analog self-interference signal with respect to the signal and then storing same; and receiving from the counterpart node an ACK/NACK signal with respect to the transmission of the signal; and determining whether or not the stored residual self-interference signal is to be used thereafter on the basis of the ACK/NACK signal.
Abstract:
A method for performing authentication by a base station with a terminal in a wireless communication system, according to an embodiment of the present invention, comprises the steps of: receiving from a terminal a radio resource control (RRC) connection setup request message; determining, on the basis of the RRC connection setup request message, whether or not the terminal requested fast authentication; if the terminal requested fast authentication, transmitting an international mobile subscriber identity (IMSI) of the terminal to a mobility management entity (MME) before the RRC connection setup of the terminal is complete; and authenticating the terminal on the basis of the control of the MME, wherein, in the step for authenticating the terminal, non-access stratum (NAS) security setup and access stratum (AS) security key setup of the terminal are simultaneously performed.
Abstract:
The present invention provides a method for defining, and for transmitting, a new uplink reference signal and devices supporting the method. In one embodiment of the present invention, a method in which a terminal transmits a millimetre wave reference signal (mW-RS) in a millimetre-wave (mmWave)-supporting wireless access system comprises the steps of: receiving a downlink reference signal in a predetermined number of sub-frames, and measuring two or more received power levels; determining whether to transmit an mW-RS, based on the value(s) of the difference(s) between the two or more received power levels; and transmitting the mW-RS if it has been decided to transmit an mW-RS. Here, the mW-RS is transmitted in order to measure whether the state of a wireless channel has transitioned between an LoS (Light of Sight) state and a NLoS (Non-LoS) state.
Abstract:
The present invention relates to a wireless access system supporting a full duplex radio (FDR) transmission environment. The method for a terminal to control uplink transmission power in a wireless access system supporting an FDR, according to an embodiment of the present invention, comprises the steps of: transmitting, to a terminal, power control information on uplink transmission power; and receiving an uplink signal transmitted on the basis of the power control information. The power control information may be determined on the basis of the maximum transmission power of the terminal, the open loop or closed loop power control factor, and a function having as a variable self-interference (SI) value of the base station due to the FDR.