Compiler optimization for many integrated core processors
    124.
    发明授权
    Compiler optimization for many integrated core processors 有权
    许多集成核心处理器的编译器优化

    公开(公告)号:US09471289B2

    公开(公告)日:2016-10-18

    申请号:US14667819

    申请日:2015-03-25

    CPC classification number: G06F8/443 G06F8/433 G06F8/51

    Abstract: Systems and methods for source-to-source transformation for compiler optimization for many integrated core (MIC) coprocessors, including identifying data dependencies in candidate loops and data elements used in each iteration for arrays, profiling candidate loops to find a proper number m, wherein data transfer and computation for m iterations take an equal amount of time, and creating an outer loop outside the candidate loop, with each iteration of the outer loop executing m iterations of the candidate loop. Data streaming is performed by determining optimum buffer size for one or more arrays and inserting code before the outer loop to create optimum sized buffers, overlapping data transfer between central processing units (CPUs) and MICs with the computation; reusing buffers to reduce memory employed on the MICs, and reusing threads on MICs to repeatedly launch kernels on the MICs for asynchronous data transfer.

    Abstract translation: 用于许多集成核心(MIC)协处理器的编译器优化的源到源转换的系统和方法,包括识别用于阵列的每次迭代中使用的候选循环和数据元素中的数据依赖性,分析候选循环以找到适当数量m,其中 m次迭代的数据传输和计算需要等量的时间,并且在候选循环外部创建外部循环,每个外部循环的迭代执行候选循环的m次迭代。 通过确定一个或多个阵列的最佳缓冲区大小并在外部循环之前插入代码来创建最佳大小的缓冲区,在中央处理单元(CPU)与MIC之间重叠数据传输与计算来执行数据流; 重用缓冲区以减少在MIC上使用的存储器,并且在MIC上重复使用线程来重复地在MIC上启动内核以进行异步数据传输。

    Compact, Clustering-Based Indexes for Large-Scale Real-Time Lookups on Streaming Videos
    125.
    发明申请
    Compact, Clustering-Based Indexes for Large-Scale Real-Time Lookups on Streaming Videos 有权
    基于紧凑型,基于聚类的索引,用于流式视频上的大规模实时查询

    公开(公告)号:US20160299920A1

    公开(公告)日:2016-10-13

    申请号:US15088452

    申请日:2016-04-01

    Abstract: Systems and methods for recognizing a face are disclosed and includes receiving images of faces; generating feature vectors of the images; generating clusters of feature vectors each with a centroids or a cluster representative; for a query to search for a face, generating corresponding feature vectors for the face and comparing the feature vector with the centroids of all clusters; for clusters above a similarity threshold, comparing cluster members with the corresponding feature vector; and indicating as matching candidates for cluster members with similarity above a threshold.

    Abstract translation: 公开了用于识别面部的系统和方法,并且包括接收面部图像; 生成图像的特征向量; 产生每个具有质心或簇代表的特征向量簇; 用于搜索面部的查询,为面部生成相应的特征向量并将特征向量与所有聚类的质心进行比较; 对于高于相似性阈值的簇,将簇成员与对应的特征向量进行比较; 并且指示作为具有高于阈值的相似性的聚类成员的匹配候选。

    WiFi-Based Indoor Positioning and Navigation as a New Mode in Multimodal Transit Applications
    126.
    发明申请
    WiFi-Based Indoor Positioning and Navigation as a New Mode in Multimodal Transit Applications 有权
    基于WiFi的室内定位和导航作为多模态传输应用中的新模式

    公开(公告)号:US20160298978A1

    公开(公告)日:2016-10-13

    申请号:US15088352

    申请日:2016-04-01

    CPC classification number: G01C21/3423

    Abstract: A system for planning a trip includes heterogeneous data sources including map data, traffic information, vehicle trace data, weather reports, social media data, commuter feedback data, GIS data, travel time data; a stream analytics engine coupled to the heterogeneous data sources; a batch analytics engine coupled to the heterogeneous data sources; and a multi-modal journey planner coupled to the stream analytics engine and the batch analytics engine, the multi-modal journey planner processing indoor travel information and providing real-time updates while a journey is under progress, the multi-modal journey planner providing a journey time forecast as the journey time reflects indoor travel time.

    Abstract translation: 用于规划旅程的系统包括异构数据源,包括地图数据,交通信息,车辆跟踪数据,天气报告,社交媒体数据,通勤反馈数据,GIS数据,旅行时间数据; 耦合到异构数据源的流分析引擎; 耦合到异构数据源的批量分析引擎; 多模式旅程计划器与流分析引擎和批量分析引擎相结合,多模式旅程计划程序处理室内旅行信息,并在旅途中提供实时更新,多模式旅程计划提供 旅行时间预测作为旅途时间反映室内旅行时间。

    Accelerating distributed transactions on key-value stores through dynamic lock localization
    127.
    发明授权
    Accelerating distributed transactions on key-value stores through dynamic lock localization 有权
    通过动态锁定定位加速键值存储上的分布式事务

    公开(公告)号:US09367346B2

    公开(公告)日:2016-06-14

    申请号:US14162901

    申请日:2014-01-24

    CPC classification number: G06F9/466 G06F17/30362

    Abstract: Systems and methods for accelerating distributed transactions on key-value stores includes applying one or more policies of dynamic lock-localization, the policies including a lock migration stage that decreases nodes on which locks are present so that a transaction needs fewer number of network round trips to acquire locks, the policies including a lock ordering stage for pipelining during lock acquisition and wherein the order on locks to avoid deadlock is controlled by average contentions for the locks rather than static lexicographical ordering; and dynamically migrating and placing locks for distributed objects in distinct entity-groups in a datastore through the policies of dynamic lock-localization.

    Abstract translation: 用于加速键值存储上的分布式事务的系统和方法包括应用动态锁定位的一个或多个策略,该策略包括减少存在锁的节点的锁迁移阶段,使得事务需要更少数量的网络往返 获取锁,该策略包括在锁获取期间用于流水线的锁定订购阶段,并且其中锁的顺序以避免死锁由所述锁的平均争用控制而不是静态字典排序; 并通过动态锁定位策略动态地迁移和放置数据存储区中不同实体组中的分布式对象的锁。

    Source-to-source transformations for graph processing on many-core platforms
    128.
    发明授权
    Source-to-source transformations for graph processing on many-core platforms 有权
    用于多核平台上图形处理的源到源转换

    公开(公告)号:US09335981B2

    公开(公告)日:2016-05-10

    申请号:US14510660

    申请日:2014-10-09

    CPC classification number: G06F8/456 G06F8/51

    Abstract: Methods are provided for source-to-source transformations for graph processing on many-core platforms. A method includes receiving a graph application including one graph, expressed by a graph application programming interface configured for defining and manipulating graphs. The method further includes transforming, by a source-to-source compiler, the graph application into a plurality of parallel code variants. Each of the plurality of parallel code variants is specifically configured for parallel execution by a target one of a plurality of different many-core processors. The method also includes selecting and tuning, by a runtime component, a particular one of the parallel code variants for the parallel execution responsive to graph application characteristics, graph data, and an underlying code execution platform of the plurality of different many-core processors.

    Abstract translation: 为多核平台上的图处理提供了源到源转换的方法。 一种方法包括接收图形应用程序,该图形应用程序包括由图形应用编程接口表示的一个图形,该应用程序编程接口被配置为定义和 该方法还包括将源应用程序编译器将图形应用程序转换为多个并行代码变体。 多个并行代码变体中的每一个被特别地配置为由多个不同的多核处理器中的目标一个并行执行。 该方法还包括响应于图形应用特征,图形数据和多个不同的多核处理器的底层代码执行平台,由运行时组件选择和调整用于并行执行的并行代码变体中的特定一个。

    SOURCE-TO-SOURCE TRANSFORMATIONS FOR GRAPH PROCESSING ON MANY-CORE PLATFORMS
    129.
    发明申请
    SOURCE-TO-SOURCE TRANSFORMATIONS FOR GRAPH PROCESSING ON MANY-CORE PLATFORMS 有权
    用于多核平台图形处理的源 - 源转换

    公开(公告)号:US20150113514A1

    公开(公告)日:2015-04-23

    申请号:US14510660

    申请日:2014-10-09

    CPC classification number: G06F8/456 G06F8/51

    Abstract: Methods are provided for source-to-source transformations for graph processing on many-core platforms. A method includes receiving a graph application including one graph, expressed by a graph application programming interface configured for defining and manipulating graphs. The method further includes transforming, by a source-to-source compiler, the graph application into a plurality of parallel code variants. Each of the plurality of parallel code variants is specifically configured for parallel execution by a target one of a plurality of different many-core processors. The method also includes selecting and tuning, by a runtime component, a particular one of the parallel code variants for the parallel execution responsive to graph application characteristics, graph data, and an underlying code execution platform of the plurality of different many-core processors.

    Abstract translation: 为多核平台上的图处理提供了源到源转换的方法。 一种方法包括接收图形应用程序,该图形应用程序包括由图形应用编程接口表示的一个图形,该图形应用程序界面被配置为定义和操纵图形。 该方法还包括将源应用程序编译器将图形应用程序转换为多个并行代码变体。 多个并行代码变体中的每一个被特别地配置为由多个不同的多核处理器中的目标一个并行执行。 该方法还包括响应于图形应用特征,图形数据和多个不同的多核处理器的底层代码执行平台,由运行时组件选择和调整用于并行执行的并行代码变体中的特定一个。

    Semi-Automatic Restructuring of Offloadable Tasks for Accelerators
    130.
    发明申请
    Semi-Automatic Restructuring of Offloadable Tasks for Accelerators 有权
    加速器可卸载任务的半自动重组

    公开(公告)号:US20140325495A1

    公开(公告)日:2014-10-30

    申请号:US14261897

    申请日:2014-04-25

    CPC classification number: G06F8/452 G06F8/4441 G06F9/5027 G06F2209/509

    Abstract: A computer implemented method entails identifying code regions in an application from which offloadable tasks can be generated by a compiler for heterogenous computing system with processor and accelerator memory, including adding relaxed semantics to a directive based language in the heterogenous computing for allowing a suggesting rather than specifying a parallel code region as an offloadable candidate, and identifying one or more offloadable tasks in a neighborhood of code region marked by the directive.

    Abstract translation: 计算机实现的方法需要识别应用程序中的代码区域,编译器可以由编译器为具有处理器和加速器存储器的异构计算系统生成可卸载任务,包括在异构计算中为基于指令的语言添加轻松语义,以允许建议而不是 将并行代码区域指定为可卸载候选者,以及识别由该指令标记的代码区域附近的一个或多个可卸载任务。

Patent Agency Ranking