Abstract:
A method, comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the shut-off valve corresponding to the inlet to close, and by causing the drain valve corresponding to the inlet to open.
Abstract:
A milking device includes a support device (1) supporting a milking member (2) having a claw (3) and a number of teatcups (4) to be attached to a respective teat of an animal. The support device (1) includes a rear portion (6), an attachment part (9) attaching the support device to a structure, and an arm section (7) having a proximal end portion attached to the rear portion (6) and a distal end portion movable between an active position in the proximity of the animal to be milked and a rest position. A first cavity extends along the arm section and houses a retracting member for retracting the milking member from the teats of the animal. A second cavity for conveying a fluid flow extends along the arm section. The arm section includes an extruded part enclosing the first cavity and the second cavity.
Abstract:
The invention relates to a device for stimulating an udder during milking, made up of a housing with a first connection (350, 351) and a second connection (352, 353), which housing can be grasped by a hand. The first connection connects the housing to a pulsator and the second connection connects the housing to a teat cup. A throttle valve (305, 306) is interposed between the first connection and the second connection. A control device (309) is housed in the housing and is adapted to bring the throttle valve, after a defined duration, from a partially open to an open position.
Abstract:
A system and method for managing an agricultural device, including connecting the agricultural device to a network, collecting operational data relating to the agricultural device, granting an access right in respect of the collected operational data to an entity connected to the network, receiving data from the entity in response to the access right, and managing the agricultural device on the basis of the collected operational data and the data from the entity. The method may be implemented for managing multiple agricultural devices, and may be implemented in a computer readable medium. In one embodiment, the operational data relates to clinical mastitis detection.
Abstract:
A griper device mountable on a robot arm of a milking robot provided for automatically attach teat cups to the teats of a milking animal, the gripper device comprises an electromagnet from gripping teat cups made of a magnetic material, the electromagnet including a coil feedable with a current a core of a magnetic material arranged at least partly within the coil; and a support structure for holding the electromagnet. The core comprises two end and portions in a single face of the electromagnet wherein the two end portions constitute different poles of the electromagnet and are shaped to be engagable with each of the teat cups in a close fit.
Abstract:
Device for pneumatically milking a cow, comprising a number of milk extractors, each comprising a teat cup as well as milk line connected to the lower end of the teat cup, which line leads from the teat cup to a collection chamber for the milk from the teat cup, each milk extractor being provided with a supply for a cleansing medium, such as a disinfectant, to the teat cup, in particular to a teat present in the teat cup, the supply comprising a line having an end portion with discharge end, and each milk extractor being provided with means for closing off the passage of the milk extraction at or downstream of the discharge end of the line for cleansing medium, preferably at that level, when discharging the cleansing medium, the closing means comprising a reciprocating closing body that can be moved between a position leaving the passage of the milk extractor free and a position closing it off, the closing body being provided with a squirt line forming the end portion with discharge end of the line for supply of cleansing medium, and being positioned to debouch into the milk extractor, particularly the milk line, when in the closing-off position.
Abstract:
A method for controlling the milking by a milking machine comprises the steps of: (i) controlling (47) a milking vacuum so that the milking vacuum is varied through the vacuum levels of a given range, while a milking animal is milked by the aid of the milking vacuum; (ii) monitoring (43) a milk flow from the milking animal during the variation of the vacuum levels; (iii) setting (49) the milking vacuum to the lowest vacuum level of the given range, for which the milk flow from the milking animal is at least a given fraction of the highest milk flow monitored while the milking vacuum is varied; and (iv) keeping (51) the milking vacuum at the set vacuum level during a following part of the milking of the milking animal.
Abstract:
A teat cup carrier is designed to be able to co-operate with a feed platform, which teat cup carrier is freely movable relative to the feed platform. The teat cup carrier carries, besides teat cups, further milking elements for milking an animal, the further milking elements including at least a milk storage vessel for storing milk, a milking vacuum source and a pulsation vacuum source. The milk storage vessel is provided with a milk outlet. The freely movable teat cup carrier is in particular a self-propelled (autonomous) mobile teat-cup-carrying robot and comprises a control unit for controlling the functioning of the mobile teat-cup-carrying robot.
Abstract:
A method of milking an animal, in which method a movable milking platform is used. The method comprises the following steps: setting the movable milking platform in motion, allowing an animal access to the milking platform, supplying a sort of feed to an animal on the milking platform, subsequently allowing the animal exit from the milking platform, and milking the animal on the milking platform during a milking period. The method further comprises the step of providing the animal a span of time on the milking platform in which the animal is not milked, the span of time having a magnitude that amounts to at least approximately half the milking period. The speed of movement of the milking platform being selected at least partially on the basis of a feed consumption duration of an animal present on the milking platform, such that the span of time has such a magnitude that an animal is provided a sufficient time to substantially complete its feed consumption during their stay on the platform, said span of time being smaller than 75 minutes.
Abstract:
A method of milking a dairy animal and cleaning at least a part of a milking implement for milking the dairy animal, the milking implement comprising: at least one teat cup; a foremilk storage volume that is designed to contain an amount of fluid; a connection between the at least one teat cup and the foremilk storage volume, wherein the at least one teat cup is attached to a teat of the dairy animal to be milked, foremilk is withdrawn and an amount of the withdrawn foremilk is collected in the foremilk storage volume and wherein the amount of foremilk is released in such a way that the foremilk is displaceable from the foremilk storage volume by means of a vacuum.