Abstract:
An apparatus and method capable of obtaining an output characteristic of the print unit and determining a correction value for an output density, without using an expensive scanner. To realize this, a nozzle array consisting of a plurality of nozzles provided in the print head is divided into a plurality of nozzle blocks [a] to [d] and each of patches is formed by using the nozzles of the same nozzle block allocated to the patch. The patches are printed in a size and shape that allows the densities of the patches to be optically detected by the density sensor. A test pattern comprising these patches is measured by the density sensor to make a density correction for each nozzle of the print head.
Abstract:
An ink jet printing process, having the steps of: A) providing an ink jet printer that is responsive to digital data signals; B) loading the printer with an ink jet recording element having a support having thereon in order: i) at least one porous, ink carrier liquid receptive layer; ii) a fusible, porous dye-trapping layer of fusible polymeric particles, a binder, and a dye mordant; and iii) a fusible, porous ink-transporting layer of fusible, polymeric particles and a film-forming, hydrophobic binder; C) loading the printer with an ink jet ink compositions; and D) printing on the image-receiving layer using the ink jet ink in response to the digital data signals.
Abstract:
The inventive installation for continuously producing and imprinted textile strip (24, 24A, 24B, 24C, 26, 26A, 26B) contains a print station (12) that is connected to an electronic control device (66). In order to achieve a cost savings and an efficient production of the imprinted textile strip, the inventive installation is configured in such a manner that a print head (28) of the print station (12) imprints a first strip side (27) of the textile strip (24, 26). Alternatively, the second strip side (40) of the textile strip can be additionally imprinted during a working operation involving the use the same print head (28) and the same printing station.
Abstract:
An active energy beam-curable composition includes a photo-cationic polymerizable substance; a photo-cationic polymerization initiator; and a polymerizable compound having an ethylenic unsaturated double bond such as monomethacrylate, dimethacrylate, monoacrylate, and diacrylate. Owing to the compound having the ethylenic unsaturated double bond contained in the composition, it is possible to suppress the occurrence of odor and cloudiness even when the composition is heated after being cured.
Abstract:
There are provided a method of forming an image on a card and an apparatus therefor, which are capable of properly carrying out printing of an image on a card and protection of the printed image in a simplified manner without changing the size of the card. A card is used which has an ink-fixing layer laminated on a surface of a substrate layer and an ink image-receiving layer peelably laminated on a surface of the ink-fixing layer. An image is printed on the card, while feeding the card, by an ink jet printing method using a sublimable dye ink. The card printed with the image is conveyed to a heating source, and subjected to heat treatment by the heating source to cause diffusion of the sublimable dye ink held in the ink image-receiving layer in the ink-fixing layer, and color development to form an image. The ink image-receiving layer is peeled off the card after the heat treatment.
Abstract:
A media eject system for a printer having an output tray includes an edge wing for supporting an edge of media exiting the printer, the edge wing movable between support and non-support positions. A kicker engages a trailing edge of media and moves the media into the tray. The kicker is movable between a retracted position and an extended position and operable to move the media into the tray by movement of the kicker from the retracted position to the extended position. A controller determines a print condition including at least one of a media type and a print format, and adjusts a position of the wing dependent upon the print condition.
Abstract:
An ink jet printer for forming an image on a recording medium with an active-ray-setting ink, which is hardened by an irradiation of active rays; having a plurality of heads, each of the plurality of heads having a plurality of jet openings for jetting the active-ray-setting ink as ink drops towards the recording medium; and a plurality of active ray sources of irradiate active rays for hardening the ink drops of the active-ray-setting ink landed on the recording medium, wherein each of the plurality of heads and each of the plurality of active ray sources are arranged alternately.
Abstract:
Media is transported to an imaging region using a vacuum feeder. A vacuum head is positioned onto the media and a vacuum is applied to the vacuum head to hold the media against the vacuum head. The vacuum head is then relocated to the imaging region carrying with it the media. In one embodiment, the vacuum head holds the media slightly above the surface of the imaging region. After the media is imaged, the vacuum head moves the media to an output region. In the output region the vacuum is removed from the vacuum head allowing the media to detach from the vacuum head and remain in the output region. In another embodiment, the vacuum is removed from the vacuum head allowing the media to detach from the vacuum head and remain in the imaging region. A second vacuum head is positioned in the imaging region onto the media and a vacuum is applied to the second vacuum head to hold the media against the second vacuum head. The second vacuum head is then relocated to the output region carrying with it the media. The second vacuum head moves the media to an output region. In the output region the vacuum is removed from the second vacuum head allowing the media to detach from the second vacuum head and remain in the output region.
Abstract:
The present invention is drawn to systems and methods for reducing air fade of ink-jet inks, particularly with respect to dye-based ink-jet inks printed on porous media. Specifically, a method of printing an image on porous media with increased air fade resistance can include the steps of (a) providing an ink-jet ink, wherein the ink-jet ink includes a dye and a water-soluble or water dispersable copolymer in a vehicle carrier; (b) providing a porous media substrate having an inorganic porous media coating, wherein the inorganic porous media coating provides voids for the ink-jet ink to fill; and (c) ink-jetting the ink-jet ink onto the porous media substrate, thereby providing an image having increased air fade resistance.
Abstract:
An image forming method comprising the steps of: forming an image by jetting an ink comprising a high-boiling point solvent onto a textile; and removing the high-boiling point solvent from the image-formed textile by drying the fabric under depressurized condition.