Abstract:
A method for decoding in a wireless downlink channel, where all dominant transmitting sources use inner codes from a particular set, including the steps of: estimating a channel matrix seen from each dominant transmitter source in response to a pilot or preamble signal transmitted by each such source; converting each estimated channel matrix into an effective channel matrix responsive to the inner code of the corresponding transmitting source; obtaining the received observations in a linear equivalent form whose output is an equivalent of the received observations and in which the effective channel matrix corresponding to each dominant transmitting source inherits the structure of its inner code; i) determining an order for processing each of the transmitting sources; ii) computing a filter for each transmitting source that will be decoded; iii) demodulating and decoding each transmitting source responsive to the determined order from step i) assuming perfect cancellation of signals of preceding or previously decoded transmitting sources; and iv) re-encoding the decoded message of each transmitting source, except the source decoded last, responsive to the modulation and coding scheme employed by the source and the corresponding effective channel matrix and subtracting it from the received observations in the equivalent linear form.
Abstract:
In accordance with the invention, a method includes the steps of: i) initializing with channel matrix estimates and inner codes of all co-channel transmitter sources in a wireless network, modulation and coding schemes of all sources not of interest; ii) converting each channel matrix estimate into an effective channel matrix responsive to the inner code of the corresponding transmitter source; iii) selecting iteratively from a first set of transmitter sources transmitting at fixed rates, a transmitter source which maximizes a first metric; iv) computing iteratively a filter for the transmitter source which maximizes the first metric; v) selecting iteratively from a second set of transmitter sources of interest, a transmitter source which maximizes a second metric; vi) computing iteratively a rate and a filter for the transmitter source which maximizes the second metric; and vii) obtaining an ordered set of indices of all transmitter sources that will be decoded along with their corresponding filters, and feedback rates for all transmitter sources of interest.
Abstract:
Methods and apparatus for designing spherical lattice codebooks for use in data transmission systems are provided. A spherical lattice codebook is constructed by determining the channel statistics of one or more channels, which can be accomplished by observing a sufficiently large set of channel realizations. After determining the channel statistics, an expression for the error probability of the decoder or expressions for bounds on the error probability and expressions for the corresponding gradients are determined. The gradient is then used in an optimization technique to produce a spherical lattice codebook which is subsequently used for transmission.
Abstract:
The present invention relates to an orientation unit for a fruit sorting and grading machine, for rolling apples around their major axes at a fixed rpm depending upon the imaging and processing speed so as to make it possible for the camera to scan the entire periphery of each apple. This orientation unit of the present invention consists of a pair of rollers, wherein each of the rollers has a conical profile on one side and a flat laminar surface on the other side to orient an apple of any shape with its major axis aligned along the axis of rotation. This set of rollers is spring loaded to make it possible for the rollers move to and fro to accommodate apples of size ranging from 60 mm to 100 mm. A rotating belt is provided underneath the rollers to rotate the fruits at a desired rpm so that a camera with an image processing system can scan the entire periphery of the fruit, including the size and shape, and surface bruises, and grade them into multiple categories in terms of quality.
Abstract:
A group detection arrangement for a multiple antenna receiver structure usable with a multiuser multiple access communication channel with fading is herein disclosed. The group detection arrangement uses an optimized channel dependent group partitioning technique.