Abstract:
A wireless communications network includes a mobile station and base station communicating an indicator of an autonomous data rate supportable over a reverse wireless link between the mobile station and base station. The mobile station and base station also communicate a flag indicating whether autonomous is enabled for the mobile station. In response to the flag indicating that autonomous mode is enabled, data is communicated, over the reverse wireless link, at a data rate less than or equal to the autonomous data rate without the base station having to first schedule the mobile station.
Abstract:
A digital performance monitoring method and system for an optical communications system utilizes a channel monitor and a digital signal processor (DSP). The channel monitor is designed to monitor a respective channel signal of the optical communications system, and includes: a sample memory adapted to store sample data including a set of sequential N-bit (where Nnull1) samples generated by an Analog-to-Digital (A/D) converter at a timing of a predetermined sample clock during a predetermined time interval; and a controller adapted to control storage of the sample data to the sample memory. The digital signal processor (DSP) is designed to calculate at least one performance parameter of the optical communications system based on the sample data.
Abstract:
At the provider edge of a core network, an egress interface may schedule based on a class dominance model, a destination dominance model or a herein-proposed class-destination dominance model. In the latter, queues are organized into sub-divisions, where each of the subdivisions includes a subset of the queues having a per hop behavior in common and at least one of the subsets of the queues is further organized into a group of queues storing protocol data units having a common destination. Scheduling may then be performed on a destination basis first, then a per hop behavior basis. Thus providing user-awareness to a normally user-unaware class dominance scheduling model.
Abstract:
A scaleable high-capacity network comprises several non-uniform composite-star networks interconnected by a number of lateral uniform composite-star networks, thus forming an irregular two-dimensional network. Each non-uniform composite star network comprises electronic edge nodes, possibly of significantly different capacities, interconnected by optical core nodes. The optical core nodes are not connected to each other, and each may be configured differently and have a different reach index, where the reach index of a core node is the number of edge nodes to which the core node directly connects. The selection of a route through a core node within a non-uniform composite-star network is based on a composite index determined according to the reach index of the core node and the propagation delay along the route. The selection of a route in the irregular two-dimensional is based on pre-computed trail sets where each trail is a cascade of trail segments and each trail segment comprises at least one track connecting two edge nodes through a core node.
Abstract:
A polyphase circulating switch includes switch modules interconnected through a multiplicity of rotators preferably arranged in complementary groups of opposite rotation directions. A polyphase circulating switch having a low switching delay is derived from a multi-rotator circulating switch by providing programmable rotators having adjustable relative rotator-cycle phases. A low delay high-capacity switch may also be constructed from prior-art medium-capacity rotator space switches with mutually phase-shifted rotation cycles. A network comprising several constellations of switch modules distributed over a wide geographic area, where the switch modules of each constellation are interconnected through a rotator assembly, is also disclosed. A rotator assembly may comprise an array of rotators and a master controller for data-transfer scheduling and time-coordination.
Abstract:
A method and system enables communications between a switched telephone network and a wireless network comprising a plurality of Mobile Switching Centers (MSCs). Each MSC is connected by respective interfaces to a broadband packet network used for the transfer of bearer traffic between the MSCs, and controls wireless communications with a respective plurality of wireless transceivers. The switched telephone network and the wireless network are interconnected by at least one media gateway for conveying bearer traffic between the switched telephone network and the broadband packet network. The system comprises a location register and a call manager. The location register is adapted to store, in respect of each wireless transceiver, information identifying a respective current MSC controlling communications with the wireless transceiver. The call manager is adapted to: query the location register to obtain the information identifying the current MSC respecting the selected wireless transceiver; and enable a communications path across the broadband packet network between an inbound media gateway and the current MSC. The advantages include simplified routing, congestion reduction and reduced cost of infrastructure to support a rapidly expanding wireless subscriber base.
Abstract:
The sending unit (30) produces a sequence of blocks each comprising data to be transmitted and a header, that it sends to a receiving unit (31). The header of each block comprises an acknowledgement control field activated intermittently so as to request an acknowledgement of blocks on the part of the receiving unit. The acknowledgement control field for some blocks of the sequence is activated in accordance with a predetermined triggering mode, and the activation of the acknowledgement control field is repeated for at least one block of the sequence that was sent after a block where the acknowledgement control field has been activated in accordance with the predetermined triggering mode.
Abstract:
A system and method for maximizing throughput in a telecommunications system is disclosed. The system includes an antenna system using fixed narrow beams that transmits and allows improved capacity gain to be realized without degrading call performance. The system can include: forming a plurality of directional narrow uplink beams at a main antenna; receiving communications signals on the plurality of directional uplink beams; periodically scanning across the plurality of uplink beams associated with a given call; assessing a set of beams from the plurality of uplink beams based upon a quality of reverse link information; selecting a first subset from the set of beams to be turned off when the quality of reverse link information reaches a first predetermined value; and instructing the subset to not transmit a traffic channel and to continue to transmit the power control sub channel.
Abstract:
A radio beacon is installed for broadcasting a radio signal in a protected zone. This radio signal carries system information shaped according to a broadcasting channel of a cellular radiocommunication system. This system information comprises a service restriction indication in respect of terminals situated in the protected zone. When it is detected, such an indication is stored by a terminal and transmitted to the cellular system in a call setup procedure prior to any production of audible signals.
Abstract:
Several versions of the radio signal are transmitted with different polarizations from a first station to a second station. The respective transmission powers of these versions of the radio signal are adaptively controlled according to measurements carried out by the first station on signals transmitted by the second station.