Abstract:
A method of machining a component is provided. The component includes a substrate having an outer surface and an inner surface, where the inner surface defines at least one interior space. A core is disposed within each interior space. The method includes forming at least one hole in the substrate while the core is disposed within the respective interior space. Each hole extends through the substrate to provide fluid communication with the respective interior space. The method further includes removing the core from the respective interior space. The core may be a casting core or a subsequently formed core.
Abstract:
Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface of the substrate. The method further includes disposing a sacrificial filler within the groove(s), disposing a permanent filler over the sacrificial filler, disposing a coating over at least a portion of the substrate and over the permanent filler, and removing the first sacrificial filler from the groove(s), to define one or more channels for cooling the component. A component with a permanent filler is also provided.
Abstract:
A method of manufacturing a component is provided. The method includes forming one or more grooves in an outer surface of a substrate. Each groove extends at least partially along the surface of the substrate and has a base, a top and at least one discharge point. The method further includes forming a run-out region adjacent to the discharge point for each groove and disposing a coating over at least a portion of the surface of the substrate. The groove(s) and the coating define one or more channels for cooling the component. Components with cooling channels are also provided.
Abstract:
A method of fabricating a component is provided. The method includes forming one or more grooves in a surface of a substrate, where the substrate has at least one hollow interior space. Each of the one or more grooves extends at least partially along the substrate surface and has a base and a top. The base is wider than the top, such that each of the one or more grooves comprises a re-entrant shaped groove. The method further includes forming one or more access holes through the base of a respective groove, to connect the groove in fluid communication with respective ones of the hollow interior space(s), and disposing a coating over at least a portion of the substrate surface. The one or more grooves and coating define one or more re-entrant shaped channels for cooling the component. A component with one or more re-entrant shaped channels and a method of coating a component are also provided.
Abstract:
A method of forming a passage in a turbine component includes: using an additive manufacturing process to form a first support structure on a first surface of the turbine component; forming a second support structure on a second surface of the turbine component, the second support structure being spaced apart from the first support structure; and forming a passage in the turbine component between the first and second support structures.
Abstract:
A method of forming structure on a component includes: providing a component having a first surface; adhering powder to the first surface; and directing a beam from a directed energy source to fuse the powder in a pattern corresponding to a layer of the structure.
Abstract:
An engine component can comprise a cooled surface adjacent to a cooling flow and a hot surface adjacent to a hot flow of fluid. The component can comprise a wall separating the hot and cooling flows, defining the cooled surface and the hot surface, and having a plurality of film holes disposed in the wall. At least one turbulator and at least one film hole inlet can be disposed on the cooled surface. The turbulator and the inlet can be arranged to provide a steady flow of cooling fluid to the film hole. One arrangement can comprise spacing the film hole inlet at least two turbulator heights from the turbulator.
Abstract:
Methods for repairing a trailing edge of an airfoil are provided. The method can include removing a portion of the trailing edge of the airfoil to form an intermediate component, and then applying using additive manufacturing a replacement portion on the intermediate component to form a repaired airfoil. The replacement portion defines at least one trailing edge ejection slot.
Abstract:
Gas turbine engine components are provided which utilize an insert to provide cooling air along a cooled surface of an engine component. The insert provides cooling holes or apertures which face the cool side surface of the engine component and direct cooling air onto that cool side surface. The apertures may be formed in arrays and directed at an oblique or a non-orthogonal angle to the surface of the insert and may be at an angle to the surface of the engine component being cooled. An engine component assembly is provided with counterflow impingement cooling, comprising an engine component cooling surface having a cooling fluid flow path on one side and a second component adjacent to the first component. The second component may have a plurality of openings forming an array wherein the openings extend through the second component at a non-orthogonal angle to the surface of the second component.
Abstract:
A method for cooling a component of a gas turbine engine includes flowing a cooling airflow through a cooling passage of a turbine rotor blade, wherein the cooling passage includes an inlet and an outlet formed on a blade tip of the turbine rotor blade. The method further includes receiving at least a portion of the cooling airflow exiting the outlet of the cooling passage with an aperture defined in a casing of the gas turbine engine, wherein the casing is spaced from the blade tip along the radial direction. In addition, the method includes providing the cooling airflow received with the aperture defined in the casing to the component of the gas turbine engine through a coolant duct assembly of the gas turbine engine.