Abstract:
A method including selecting candidate sensors for pooled calibration and determining a multivariate fluid characterization model with the pooled sensors is provided. The method includes determining a virtual master kernel standardization model with the pooled sensors, implementing a calibration result into a processor circuit and determining a value of a fluid characteristic by applying the multivariate fluid composition model to a plurality of responses obtained from a plurality of sensor responses to the fluid sample. The plurality of responses may be obtained from the plurality of sensor responses using the virtual master kernel standardization model. The method includes optimizing a wellbore operation based on the value of the fluid characteristic. A device for implementing the above method is also provided.
Abstract:
A system includes an optical computing device having an optical multiplexer that receives a sample light generated by an optical interaction between a sample and an illumination light is provided. The system includes sensing elements that optically interact with the sample light to generate modified lights, and a detector that measures a property of the modified lights separately. Linear and nonlinear models for processing data collected with the above system to form high-resolution spectra are also provided. Methods for designing optimal optical multiplexers for optimal reconstruction of high-resolution spectra are also provided.
Abstract:
A method for designing an integrated computational element (ICE) includes generating an array of discrete data points and plotting the discrete data points across a predetermined wavelength region. A line shape is then generated that connects to and is constrained by the array of discrete data points, and thereby generates a first transmission function. The discrete data points are then iteratively modified based on one or more performance criteria to generate a second transmission function. A model transmission function corresponding to a model ICE design is then fitted to the second transmission function to identifying a predictive ICE design configured to detect a desired characteristic of interest.
Abstract:
A method is provided, including: forming an optical computing device having a first plurality of sensing elements selected to measure a characteristic of a sample, generating a transmission function from a first add-on integrated computational element (ICE), and evaluating, with a merit-function and the transmission function of the add-on ICE, a predictive performance of a modified optical computing device that includes the add-on ICE in addition to the first plurality of sensing elements. Also, modifying the first add-on ICE to improve the predictive performance of the modified optical computing device according to the merit-function and a modified transmission function of the add-on ICE.
Abstract:
Systems and methods for simulating optical sensor response data for fluids in a wellbore are disclosed herein. A system comprises a downhole tool, an optical sensor coupled to the downhole tool, and a sensor information mapping module. The sensor information mapping module is operable to receive sensor response information associated with the optical sensor and a first fluid, receive sensor spectra information associated with the optical sensor, and receive fluid spectroscopy information associated with the first fluid. The sensor information mapping module is also operable to determine a transformation matrix using the sensor response information, the sensor spectra information, and the fluid spectroscopy information, and determine, using the transformation matrix, simulated sensor response information associated with the optical sensor and a second fluid.
Abstract:
Calibration of optical computing devices is achieved using mapping functions that map real detector responses to simulated detector responses which are simulated using high-resolution spectra of traceable optical filters and optical computing device characteristics.
Abstract:
Two or more Integrated Computational Element (“ICE”) structures are designed and utilized in an optical computing device to combinatorily reconstruct spectral patterns of a sample. To design the ICE structures, principal component analysis (“PCA”) loading vectors are derived from training spectra. Thereafter, two or more ICE structures having spectral patterns that match the PCA loading vectors are selected. The selected ICE structures may then be fabricated and integrated into an optical computing device. During operation, the ICE structures are used to reconstruct high resolution spectral data of the samples which is utilized to determine a variety of sample characteristics.
Abstract:
Systems and methods for simulating optical sensor response data for fluids in a wellbore are disclosed herein. A system comprises a downhole tool, an optical sensor coupled to the downhole tool, and a sensor information mapping module. The sensor information mapping module is operable to receive sensor response information associated with the optical sensor and a first fluid, receive sensor spectra information associated with the optical sensor, and receive fluid spectroscopy information associated with the first fluid. The sensor information mapping module is also operable to determine a transformation matrix using the sensor response information, the sensor spectra information, and the fluid spectroscopy information, and determine, using the transformation matrix, simulated sensor response information associated with the optical sensor and a second fluid.