Abstract:
Methods, apparatuses, and computer readable media for a common preamble for wireless local-area networks (WLANs). An apparatus of an access point (AP) or station (STA) comprising processing circuitry configured to decode a portion of a physical layer (PHY) protocol data unit (PPDU), the first portion of the PPDU including a physical universal signal field (U-SIG), the U-SIG comprising a version independent portion and a version dependent portion, the version independent portion including a version identifier field, the version identifier field indicating a standard version of the PPDU. The processing circuitry is further configured to refrain from decoding the version dependent portion when the standard version indicates a standard version of a later generation than a standard version of the AP or STA, and otherwise decode the version dependent portion in accordance with the standard version.
Abstract:
This disclosure describes methods, apparatuses, and wireless stations related to waking up low power radios. In particular, a wireless station is disclosed that may identify a first management frame from a first wireless station a first management frame from a first wireless station. The wireless station may cause to allocate one or more group identifications (IDs) to the first wireless station. The wireless station may cause to generate a bitmap corresponding to the allocation of the one or more group IDs to the first wireless station. The wireless station may cause to send a second management frame to the first wireless station of one or more wireless stations, wherein the second management frame comprises the bitmap.
Abstract:
Methods, apparatus, and computer-readable media are described to encode, by a first station, duty cycle timing for transmission to a second station via a primary connectivity radio. A wake-up radio (WUR) receiver (WURx) is enabled to receive a transmission based upon the duty cycle timing of the WURx when the primary connectivity radio is in a doze state from a perspective of the second station. A wake-up packet, received from the second station, is decoded and received by the WURx. The WURx receives a WURx transmission when in an WURx awake state. The primary connectivity radio is enabled based upon decoding the wake-up packet.
Abstract:
This disclosure describes systems, methods, and devices related to basic service set (BSS) information spreading indication. A device may determine one or more collocated access points (APs). The device may determine a target beacon transmission time (TBTT) associated with a beacon interval. The device may determine a first beacon frame comprising a first multiple basic service set identification (BSSID) element. The device may determine a second beacon frame comprising a second multiple BSSID element. The device may determine a time period associated with the first beacon frame and the second beacon frame. The device may cause to send the first beacon frame at a first time to one or more station devices. The device may cause to send the second beacon frame at a second time to the one or more station devices.
Abstract:
An extremely high-throughput (EHT) station (STA) may encode a null data packet (NDP) announcement frame for transmission to include a high-efficiency (HE) subfield and a Ranging subfield in a Sounding Dialogue Token field. To identify the NDP announcement frame as an EHT NDP announcement frame (i.e., an EHT variant), the EHT STA may set both the HE subfield and the Ranging subfield in the Sounding Dialogue Token field to a value of one. When operating as an EHT access point (AP), the EHT STA may encode a trigger frame to include a Special User Info Field. The Special User Info Field may be identified by a predetermined value as an STA association identifier (AID) value. The use of the predetermined value as the AID value in the Special User Info Field indicates that the trigger frame is an EHT variant and indicates that the trigger frame is being sent by an EHT AP.
Abstract:
Methods, apparatus, and computer-readable media are described to detect, by processing circuitry of a station (STA), a communication link (e.g., of a primary connectivity radio) of the STA is unavailable. A wake-up radio (WUR) packet is encoded for transmission to a second STA based on unavailability of the communication link. The WUR packet includes a command to enable a wireless hotspot of the second STA. A beacon signal received from the second STA is decoded. The beacon signal includes a service set identifier (SSID) of the wireless hotspot enabled by the second STA. A data packet is encoded for transmission to the second STA based on the SSID of the wireless hotspot.
Abstract:
Methods, apparatuses, and computer readable media for extreme high throughput (EHT) physical layer data rate. An apparatus of an access point (AP) comprising processing circuitry configured to encode an EHT capabilities element, the EHT capabilities element comprising a maximum media access control (MAC) protocol data unit (MPDU) in an aggregated MPDU (A-MPDU) length exponent subfield. The processing circuitry further configured to configure the AP to transmit the EHT capabilities element to a station (STA), and determine a maximum A-MPDU length based on two raised to a power of a constant plus a value of the A-MPDU length exponent subfield. The processing circuitry further configured to encode MPDUs in an A-MPDU, where the A-MPDU is encoded to be less than or equal to the maximum A-MPDU length.
Abstract:
Methods, computer readable media, and apparatus for determining a receive (Rx) number of spatial streams (NSS) for different bandwidths (BWs) and modulation and control schemes (MCSs) are disclosed. An apparatus is disclosed comprising processing circuitry configured to decode a supported HE-MCS and a NSS set field, the supported HE-MSC and NSS set field received from an high-efficiency (HE) station. The processing circuitry may be further configured to determine a first maximum value of N receive (Rx) SS for a MCS and a bandwidth (BW), where the first maximum value of N Rx SS is equal to a largest number of Rx SS that supports the MCS for the BW as indicated by the supported HE-MCS and NSS set field; and, determine additional maximum values based on an operating mode (OM) notification frame, and a value of an OM control (OMC) field. Signaling for BW in 6 GHz is disclosed.
Abstract:
Example systems, methods, and devices for differentiating Wi-Fi signals for spatial reuse are discussed. More specifically, a communication station arranged for Clear Channel Assessment (CCA) channel status reporting, an access point, and communication methodologies therebetween are disclosed. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
Abstract:
This disclosure describes systems, methods, and devices related to multi-link power save indication. A device may establish two or more links with a non-access point (AP) multi-link device (MLD). The device may connect a first AP of the AP MLD to a first station device (STA) of the non-AP MLD using a first link. The device may connect a second AP of the AP MLD to a second STA of the non-AP MLD using a second link. The device may use a link bitmap field included in a frame, wherein the link bitmap field comprises a first bit associated with the first STA and a second bit associated with the second STA. The device may communicate with the non-AP MLD based on the link bitmap.