Abstract:
An example video coding device is configured to determine a depth value associated with a block of video data included in a dependent depth view, based on one or more neighboring pixels positioned adjacent to the block of video data in the dependent depth view, and generate a disparity vector associated with the block of video data, based at least in part on the determined depth value associated with the block of video data. The video coding device may further be configured to use the disparity vector to generate an inter-view disparity motion vector candidate (IDMVC), generate an inter-view predicted motion vector candidate (IPMVC) associated with the block of video data based on a corresponding block of video data in a base view, and determine whether to add any of the IDMVC and the IPMVC to a merge candidate list associated with the block of video data.
Abstract:
Techniques for advanced residual prediction (ARP) for coding video data may include inter-view ARP. Inter-view ARP may include identifying a disparity motion vector (DMV) for a current video block. The DMV is used for inter-view prediction of the current video block based on an inter-view reference video block. The techniques for inter-view ARP may also include identifying temporal reference video blocks in the current and reference views based on a temporal motion vector (TMV) of the inter-view reference video block, and determining a residual predictor block based on a difference between the temporal reference video blocks.
Abstract:
A video decoder performs a neighboring-block based disparity vector (NBDV) derivation process to determine a disparity vector or performs a NBDV refinement (NBDV-R) process to determine the disparity vector. The video decoder uses the disparity vector as a disparity vector for a current block without using a median filtering process on multiple disparity motion vectors, wherein the current block is coded in either a skip mode or a direct mode. Furthermore, the video coder determines pixel values for the current block.
Abstract:
A video coder can be configured to perform texture first coding for a first texture view, a first depth view, a second texture view, and a second depth view; for a macroblock of the second texture view, locate a depth block of the first depth view that corresponds to the macroblock; based on at least one depth value of the depth block, derive a disparity vector for the macroblock; code a first sub-block of the macroblock based on the derived disparity vector; and, code a second sub-block of the macroblock based on the derived disparity vector.
Abstract:
Techniques are described for motion vector restriction where information in a bitstream ensures that a derived motion vector from a motion vector predictor is compliant with a motion vector restriction. Techniques are also described for indicating the motion vector restriction for parallel decoding.
Abstract:
Techniques are described for determining whether a block in a candidate reference picture is available. A video coder may determine a location of a co-located largest coding unit (CLCU) in the candidate reference picture, where the CLCU is co-located with a LCU in a current picture, and the LCU includes a current block that is to be inter-predicted. The video coder may determine whether a block in the candidate reference picture is available based on a location of the block in the candidate reference picture relative to the location of the CLCU. If the block in the candidate reference picture is unavailable, the video coder may derive a disparity vector for the current block from a block other than the block determined to be unavailable.
Abstract:
During a process to derive an inter-view predicted motion vector candidate (IPMVC) for an Advanced Motion Vector Prediction (AMVP) candidate list, a video coder determines, based on a disparity vector of a current prediction unit (PU), a reference PU for the current PU. Furthermore, when a first reference picture of the reference PU has the same picture order count (POC) value as a target reference picture of the current PU, the video coder determines an IPMVC based on a first motion vector of the reference PU. Otherwise, when a second reference picture of the reference PU has the same POC value as the target reference picture of the current PU, the video coder determines the IPMVC based on a second motion vector of the reference PU.
Abstract:
A device performs a disparity vector derivation process to determine a disparity vector for a current block. As part of performing the disparity vector derivation process, when either a first or a second spatial neighboring block has a disparity motion vector or an implicit disparity vector, the device converts the disparity motion vector or the implicit disparity vector to the disparity vector for the current block. The number of neighboring blocks that is checked in the disparity vector derivation process is reduced, potentially resulting in decreased complexity and memory bandwidth requirements.
Abstract:
In an example, a method of coding multi-layer video data includes determining, for a first block of video data at a first temporal location, whether one or more reference picture lists for coding the first block contain at least one reference picture at a second, different temporal location. The method also includes coding the first block of video data relative to at least one reference block of video data of a reference picture in the one or more reference picture lists, where coding includes disabling an inter-view residual prediction process when the one or more reference picture lists do not include at least one reference picture at the second temporal location.
Abstract:
Techniques are described where if an inter-view predicted motion vector candidate (IPMVC) and an inter-view disparity motion vector candidate (IDMVC) are derived based on a shifted disparity vector, where the amount by which the disparity vector is shifted for the IPMVC and IDMVC is different. The techniques also prioritize the inclusion of the IPMVC over the IDMVC in a candidate list, and prune the IPMVC and the IDMVC if there is a duplicated IPMVC or IDMVC in the candidate list.