Abstract:
Disclosed is a wind turbine blade and a method for its production. The wind turbine blade comprises an upwind side shell part and a downwind side shell part. The upwind side shell part and the downwind side part are bonded together along at least one joint. At said at least one joint, the upwind side shall part and the downwind side shell part are bonded at an internal glue flange as well as at an external glue flange. The glue flange can be produced by using a mould insert along which the glue flange is laminated.
Abstract:
This invention relates to a detection system, a detection device thereof and a method, comprising a support structure having a contact surface for contacting a first surface of a moulding element having a composite structure, wherein a number of detectable element is arranged below the contact surface and configured to interact with the detection device via a magnetic field. The detection device is moved along a second surface of the moulding element and is configured to detect a position on the second surface of a reference line in relation to a detectable element, wherein the reference line is formed by the detectable elements.
Abstract:
Disclosed is a spar beam and a wind turbine blade comprising a spar beam. The wind turbine blade comprising a first blade section extending along a longitudinal axis from a root to a first end and a second blade section extending along the longitudinal axis from a second end to a tip. The spar beam comprises a conductive beam sheath circumscribing at least a beam sheath angular distance of the spar beam about the spar beam axis and longitudinally extending from a fourth beam axis position to a fifth beam axis position.
Abstract:
The present invention relates to a wind turbine blade with an access window extending through the blade. A cover member for covering the access window is provided, such that a first end of the cover member is pivotally connected to the outer surface of the blade and a second end of the cover member is releasably fastened to the outer surface of the blade.
Abstract:
A wind turbine blade is described wherein at least one stall fence is provided on the blade surface, where the stall fence is arranged such that it extends at an angle to the chord of the blade. The stall fence acts to re-direct airflow over the blade, to improve wind turbine performance. The stall fence may be a provided towards the blade root end, acting to divert airflow towards the root end of the blade to prevent separation of attached airflow. Additionally or alternatively, the stall fence may be arranged as a flow diverter provided towards the blade tip end, to increase airflow in the tip region for increased performance and/or to disrupt the formation of tip vortices.
Abstract:
The present invention relates to a method for controlling a wind turbine comprising a pitch of one or more blades and collecting first data indicative of a dynamic condition of the first wind turbine blade and a rotor, the first data comprising rotor data and first deflection data, the rotor data indicative of the azimuth position and rotational velocity of the rotor in a rotor plane perpendicular to the rotor axis, and the first deflection data indicative of the position, speed and acceleration of one or more parts of the first wind turbine blade. The method comprises calculating an expected tower clearance distance at a later time of tower passage for the first blade based on the first data including acceleration of one or more parts of the first blade, and performing measures to prevent tower collision, if the expected tower clearance distance fulfills a collision risk criterion.
Abstract:
A wind turbine blade for a wind turbine is a shell structure of a fibre-reinforced composite and comprises a root region and an airfoil region. The root region has a ring-shaped cross section and comprises a cylindrical insert 7 embedded in the fibre-reinforced polymer so as to substantially follow the circumference of the root region. The cylindrical insert is provided with a number of mutually spaced threaded bores 12, 15 in a first end 9 thereof being accessible from the outside.
Abstract:
A method of retrofitting flow-altering devices to an outer surface of a wind turbine blade is disclosed. The flow-guiding devices are of the type having a base comprising an inner side for attaching onto the surface of the wind turbine blade, and an outer side with protruding flow-altering device parts. The method comprises the steps of: a) inserting the protruding flow-altering device parts into a mounting plate so that the inner side of the flow-guiding devices are exposed from a first side of the mounting plate, b) adhering the inner side of the flow-altering devices to the surface of the wind turbine blade by applying the first side of the mounting plate onto an area of application on the surface of the wind turbine blade, and c) removing the mounting plate from area of application on the surface of the wind turbine blade.
Abstract:
A wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line and connected at the chord-wise joint line by internal joint structure. Opposite spar caps in the first blade segment include a longitudinally extending center section having a constant transverse width up to the chord-wise joint line. Wing members are disposed against opposite longitudinal sides of the center section, each wing member having a head section with a constant transverse width and a flared tail section having a decreasing transverse width, the head section aligned with an end of the center section at the chord-wise joint line. The center section is formed from a first material having a first rigidity and the wing members are formed at least partially from a second material having a second lesser rigidity such that the wings members have an overall rigidity that is less than first rigidity of the center section.
Abstract:
The present disclosure relates to a method for manufacturing a spar cap for a wind turbine blade, the spar cap comprising a stack of pultruded plates. The method comprising laying the stack of pultruded plates between a first and a second sidewall on a mold, infusing the stack of pultruded plates with resin, and unmolding the infused stack of pultruded plates from the mold. Further, at least one of the sidewalls is adjusted along the transverse direction relative to the stack of pultruded plates at least after the laying or prior to unmolding of the stack of pultruded plates. The present disclosure also relates to infused pultrusion stacks.