Abstract:
A plasma display panel includes a first and a second plate facing each other via a discharge space. On the first plate, a first and a second bus electrode are provided which extend in a first direction and are disposed at intervals. On the second plate, a plurality of first barrier ribs are provided which extend in a second direction perpendicular to the first direction and are disposed at intervals. On the first plate, a plurality of address electrodes are provided which are disposed at respective positions facing the first barrier ribs. In a cell, a first and a second display electrode are provided which are coupled to the first and the second bus electrode respectively, and facing each other along the second direction. The first and the second display electrode are disposed on both sides of one of the address electrodes adjacently, respectively, along the first direction.
Abstract:
A plasma display panel includes an upper substrate and a lower substrate disposed to be opposite to each other, a plurality of address electrodes extending along a first direction on the lower substrate, a plurality of electrodes extending along a second direction on the upper substrate, the second direction intersecting the first direction, a plurality of light emitting cells partitioned by barrier ribs between the upper substrate and the lower substrate, the light emitting cells including first light emitting cells aligned in a first row along the second direction and second light emitting cells aligned in a second row along the second direction, the first row being offset along the first direction with respect to the second row, and phosphor layers in the light emitting cells, all the first light emitting cells in the first row having phosphor layers of a same color.
Abstract:
A plasma display panel includes a first substrate and a second substrate provided opposing one another with a predetermined gap therebetween. A plurality of barrier ribs are mounted in the gap between the first and second substrates to define a plurality of discharge cells. A plurality of phosphor layers are respectively formed in the discharge cells. A plurality of display electrodes are formed on the first substrate along a first direction, and a plurality of address electrodes are formed on the first substrate along a second direction which intersects the first direction and separated from the display electrodes.
Abstract:
A surface-discharge type PDP includes plural electrode pairs formed of first and second sustain electrodes arranged on a first substrate. Each pair extends along a line direction, and the first and second sustain electrodes are in parallel and adjacent to each other. Plural address electrodes arranged on a second substrate opposing the first substrate via a discharge space, each extending along a row direction, a matrix corresponding to a screen to be displayed is formed with the main electrodes and address electrodes, the address electrodes are orthogonal to the main electrodes, each of the address electrode is divided into, for example two partial address electrodes separated from each other by a border line located between adjacent main electrode pairs, whereby the screen is divided into two partial screens, wherein a first clearance between the partial address electrodes is substantially larger than a second clearance between main electrode pair adjacent across the border line. The arrangement order of the first and second sustain electrodes may preferably be such that first sustain electrodes of the first and second partial screens face each other via the border line, and the partial address electrodes may not cross over the first sustain electrodes nearest to the border line.
Abstract:
The present embodiments relate to a plasma display panel (PDP) for preventing a chemical reaction between a rear substrate of a sodalime glass including SiO2—CaO—Na2O and an address electrode including silver (Ag), and reducing a manufacturing cost. The PDP includes first and second substrates separately provided to face each other, a barrier rib, a phosphor layer, an address electrode, and first and second electrodes. The barrier rib is provided between the first and second substrates to partition discharge cells. The phosphor layer is formed in each discharge cell. The address electrode extends from the first substrate in a first direction. The first and second electrodes extend from the second substrate in a second direction crossing the first direction, and are arranged in parallel in the discharge cell along the first direction. The first substrate is formed of a sodalime glass including SiO2—CaO—Na2O, and the address electrode includes a frit layer formed of frit on the first substrate, and a metal layer formed of metal components on the frit layer.
Abstract:
A PDP (plasma display panel) includes: a front substrate; a rear substrate arranged opposite to the front substrate; front barrier ribs arranged between the front substrate and the rear substrate and formed of a dielectric material, the front barrier ribs partitioning discharge cells together with the front and rear substrates; front and rear discharge electrodes arranged within the front barrier ribs to surround the discharge cells, and extended in parallel along discharge cells of one row; address electrodes extended along discharge cells of another row intersecting with a row of the discharge cells where the front and rear discharge electrodes are arranged; phosphor layers arranged within the discharge cells; and a discharge gas injected in the discharge cells, in which the address electrode includes discharge portions formed in a loop shape disposed at the discharge cells and connecting portions connecting the discharge portions.
Abstract:
A plasma display panel (PDP) includes first and second substrates facing one another, a plurality of discharge electrodes, a plurality of first address electrodes, the plurality of first address electrodes having a first surface area and spaced apart from the discharge electrodes by a first vertical distance, and a plurality of second address electrodes, the plurality of second address electrodes having a second surface area and spaced apart from the discharge electrodes by a second vertical distance, the second surface area and second vertical distance being different than the first surface area and first vertical distance.
Abstract:
A plasma display panel where the address electrodes are designed to have perforated portions in the vicinity of display electrodes to prevent the build up of unwanted wall charges in the vicinity of the display electrodes to thus prevent mis-discharge in the plasma display panel. The perforations can be quadrilateral in shape, and can be made to different sizes depending on the color of the phosphor in the vicinity of the perforation. As a result, drive voltage margin quality between the different colors can be improved to produce a more reliable display.
Abstract:
A plasma display panel includes designed to improve optical efficiently and to reduce misdischarging between discharge cells. The address electrodes have varying widths so that they are narrow in discharge cells and are relatively wide outside of discharge cells. Discharge gas filling the discharge cells have an elevated Xe content, preferably 10 to 30%. Other variations further include having striped and matrix patterned barrier ribs, forming the discharge sustain electrodes in tabs extending in pairs into the middle of the discharge cells, and varying the width of address electrodes at various locations outside of the discharge cells.
Abstract:
A plasma display panel includes first and second transparent substrates provided opposing one another; first electrodes provided in parallel on the first transparent substrate, second electrodes provided in parallel on the second transparent substrate on a surface of the same opposing the first transparent substrate, the second electrodes being formed perpendicular to the first electrodes, and barrier ribs that form concave sections between the second electrodes and define discharge cells together with the concave sections. The second electrodes are formed by keeping still conductive liquid material that includes conductive particles, and allowing precipitated conductive particles to join by a heat treating process. In another aspect, at least one protrusion is formed in the each of the concave sections to divide the concave sections into a plurality of sections.